A059935 Fourth step in Goodstein sequences, i.e., g(6) if g(2)=n: write g(5)=A059934(n) in hereditary representation base 5, bump to base 6, then subtract 1 to produce g(6).
1, 83, 775, 46655, 46657, 93395, 140743, 279935, 279937, 280019, 280711, 326591, 326593, 19916489515870532960258562190639398471599239042185934648024761145811
Offset: 3
Keywords
Examples
a(12) = 280019 since with g(2) = 12 = 2^(2 + 1) + 2^2, we get g(3) = 3^(3 + 1) + 3^3-1 = 107 = 3^(3 + 1) + 2*3^2 + 2*3 + 2, g(4) = 4^(4 + 1) + 2*4^2 + 2*4 + 1 = 1065, g(5) = 5^(5 + 1) + 2*5^2 + 2*5 = 15685 and g(6) = 6^(6 + 1) + 2*6^2 + 6 + 5 = 280019.
Links
- Pontus von Brömssen, Table of n, a(n) for n = 3..17
- R. L. Goodstein, On the Restricted Ordinal Theorem, J. Symb. Logic 9, 33-41, 1944.
- Eric Weisstein's World of Mathematics, Goodstein Sequence
- Wikipedia, Goodstein's Theorem
- Reinhard Zumkeller, Haskell programs for Goodstein sequences
Programs
-
Haskell
-- See Link
-
Python
from sympy.ntheory.factor_ import digits def bump(n,b): s=digits(n,b)[1:] l=len(s) return sum(s[i]*(b+1)**bump(l-i-1,b) for i in range(l) if s[i]) def A059935(n): for i in range(2,6): n=bump(n,i)-1 return n # Pontus von Brömssen, Sep 20 2020
Comments