cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A266227 a(n) = floor(Sum_{d|n} 1/sigma(d)).

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1
Offset: 1

Views

Author

Jaroslav Krizek, Dec 24 2015

Keywords

Comments

Sequence of numbers n such that floor(Sum_{d|n} 1/sigma(d)) = k for k = 1, 2, 3:
k = 1: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, ... (A265711);
k = 2: 60, 72, 84, 90, 120, 144, 168, 180, 210, 216, 240, 252, ... (A265712);
k = 3: 110880, 166320, 221760, 277200, 327600, 332640, 360360, ... (A265713).

Examples

			For n = 6; a(6) = floor(Sum_{d|6} 1/sigma(d)) = floor(1/1 + 1/3 + 1/4 + 1/12) = floor(5/3) = 1.
		

Crossrefs

Programs

  • Magma
    [Floor(&+[1/SumOfDivisors(d): d in Divisors(n)]): n in [1..100]]
    
  • Mathematica
    A266227[n_] := Floor[DivisorSum[n, 1/DivisorSigma[1, #]&]];
    Array[A266227, 100] (* Paolo Xausa, Feb 06 2024 *)
  • PARI
    A266227(n) = { my(s=sumdiv(n,d,1/sigma(d))); (numerator(s) \ denominator(s)); }; \\ Antti Karttunen, Nov 19 2017

Formula

a(n) = floor(Sum_{d|n} 1/A000203(d)).
a(n) = floor(A265708(n) / A069934(n)) = floor(A265709(n) / A265710(n)).