cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A266240 Triangle read by rows: T(n,g) is the number of rooted 2n-face triangulations in an orientable surface of genus g.

Original entry on oeis.org

1, 4, 1, 32, 28, 336, 664, 105, 4096, 14912, 8112, 54912, 326496, 396792, 50050, 786432, 7048192, 15663360, 6722816, 11824384, 150820608, 544475232, 518329776, 56581525, 184549376, 3208396800, 17388675072, 30117189632, 11100235520, 2966845440
Offset: 0

Views

Author

Gheorghe Coserea, Dec 25 2015

Keywords

Comments

Row n contains floor((n+3)/2) terms.

Examples

			Triangle starts:
n\g    [0]          [1]          [2]          [3]          [4]
[0]    1;
[1]    4,           1;
[2]    32,          28;
[3]    336,         664,         105;
[4]    4096,        14912,       8112;
[5]    54912,       326496,      396792,      50050;
[6]    786432,      7048192,     15663360,    6722816;
[7]    11824384,    150820608,   544475232,   518329776,   56581525;
[8]    184549376,   3208396800,  17388675072, 30117189632, 11100235520;
[9]    ...
		

Crossrefs

Columns k=0-4 give: A002005, A269473, A269474, A269475, A269476.
Row sums give A062980.

Programs

  • Mathematica
    T[n_ /; n >= 0, g_] /; 0 <= g <= (n+1)/2 := f[n, g]/(3n+2); T[, ] = 0; f[n_ /; n >= 1, g_ /; g >= 0] := f[n, g] = 4*(3*n+2)/(n+1)*(n*(3*n-2)*f[n - 2, g-1] + Sum[f[i, h]*f[n-2-i, g-h], {i, -1, n-1}, {h, 0, g}]); f[-1, 0] = 1/2; f[0, 0] = 2; f[, ] = 0; Table[Table[T[n, g], {g, 0, Floor[(n + 1)/2]}], {n, 0, 9}] // Flatten (* Jean-François Alcover, Feb 27 2016 *)
  • PARI
    N = 10;
    m = matrix(N+2, N+2);
    mget(n,g) = {
      if (g < 0 || g > (n+1)/2, return(0));
      return(m[n+2,g+1]);
    }
    mset(n,g,v) = {
      m[n+2,g+1] = v;
    }
    Cubic() = {
      mset(-1,0,1/2);
      mset(0,0,2);
      for (n = 1, N,
      for (g = 0, (n+1)\2,
        my(t1 = n * (3*n-2) * mget(n-2, g-1),
           t2 = sum(i = -1, n-1, sum(h = 0, g,
                    mget(i,h) * mget(n-2-i, g-h))));
        mset(n, g, 4*(3*n+2)/(n+1) * (t1 + t2))));
      my(a = vector(N+1));
      for (n = 0, N,
        a[n+1] = vector(1 + (n+1)\2);
        for (g = 0, (n+1)\2,
             a[n+1][g+1] = mget(n, g));
        a[n+1] = a[n+1]/(3*n+2));
      return(a);
    }
    concat(Cubic())

Formula

T(n,g) = f(n,g)/(3*n+2) for all n >= 0 and 0 <= g <= (n+1)/2, where f(n,g) satisfies the quadratic recurrence equation f(n,g) = 4*(3*n+2)/(n+1)*(n*(3*n-2)*f(n-2,g-1) + Sum_{i=-1..n-1} Sum_{h=0..g} f(i,h)*f(n-2-i, g-h)) for n >= 1 and g >= 0 with the initial conditions f(-1,0)=1/2, f(0,0)=2 and f(n,g)=0 for g < 0 or g > (n+1)/2.
For column g, as n goes to infinity we have T(n,g) ~ 3*6^((g-1)/2) * t(g) * n^(5*(g-1)/2) * (12*sqrt(3))^n, where t(g) = (A269418(g)/A269419(g)) / (2^(g-2) * gamma((5*g-1)/2)) and gamma is the Gamma function. - Gheorghe Coserea, Feb 26 2016