A266270 Decimal expansion of zeta'(-15) (the derivative of Riemann's zeta function at -15).
4, 0, 0, 3, 1, 9, 3, 0, 2, 8, 0, 7, 7, 2, 5, 5, 9, 3, 8, 4, 3, 5, 8, 0, 3, 1, 7, 5, 2, 0, 3, 2, 0, 3, 6, 7, 2, 0, 1, 2, 6, 1, 2, 8, 6, 2, 6, 6, 2, 3, 2, 9, 4, 4, 2, 8, 4, 1, 0, 6, 9, 4, 2, 6, 3, 9, 0, 3, 0, 3, 3, 6, 0, 2, 9, 3, 1, 7, 2, 0, 0, 7, 6, 4, 2, 6, 1, 4, 6, 4, 2, 2, 2, 6, 4, 3, 9, 5, 4, 8, 4, 5, 7, 8, 4, 3, 1, 4, 3, 1, 3, 8, 3, 2
Offset: 0
Examples
-0.400319302807725593843580317520320367201261286266232944284106942....
Links
- G. C. Greubel, Table of n, a(n) for n = 0..1500
Crossrefs
Cf. A075700 (zeta'(0)), A084448 (zeta'(-1)), A240966 (zeta'(-2)), A259068 (zeta'(-3)), A259069 (zeta'(-4)), A259070 (zeta'(-5)), A259071 (zeta'(-6)), A259072 (zeta'(-7)), A259073 (zeta'(-8)), A266260 (zeta'(-9)), A266261 (zeta'(-10)), A266262 (zeta'(-11)), A266263 (zeta'(-12)), A260660 (zeta'(-13)), A266264 (zeta'(-14)), A266271 (zeta'(-16)), A266272 (zeta'(-17)), A266273 (zeta'(-18)), A266274 (zeta'(-19)), A266275 (zeta'(-20)).
Programs
-
Mathematica
RealDigits[N[Zeta'[-15], 100]]
Formula
zeta'(-n) = (BernoulliB(n+1)*HarmonicNumber(n))/(n+1) - log(A(n)), where A(n) is the n-th Bendersky constant.
zeta'(-15) = -4325053069/2940537600 - log(A(15)).