A266295 2-free tetranacci sequence beginning 1,3,5,7.
1, 3, 5, 7, 1, 1, 7, 1, 5, 7, 5, 9, 13, 17, 11, 25, 33, 43, 7, 27, 55, 33, 61, 11, 5, 55, 33, 13, 53, 77, 11, 77, 109, 137, 167, 245, 329, 439, 295, 327, 695, 439, 439, 475, 1, 677, 199, 169, 523, 49, 235, 61, 217, 281, 397, 239, 567, 371, 787
Offset: 1
Keywords
References
- Alm, Herald, Miller, and Sexton, 2-Free Tetranacci Sequences, unpublished.
Links
- Jeremy F. Alm, Table of n, a(n) for n = 1..10000
Programs
-
Mathematica
nxt[{a_, b_, c_, d_}] := {b, c, d, (a + b + c + d)/2^IntegerExponent[ a + b + c + d, 2]}; NestList[nxt,{1,3,5,7},60][[All,1]] (* Harvey P. Dale, Nov 09 2020 *)
-
PARI
lista(nn) = {print1(x = 1, ", "); print1(y = 3, ", "); print1(z = 5, ", "); print1(t = 7, ", "); for (n=5, nn, tt = (x+y+z+t); tt /= 2^valuation(tt, 2); print1(tt, ", "); x=y; y=z; z=t; t=tt;);} \\ Michel Marcus, Dec 29 2015
-
Python
### CREATES A b-FILE ### def main(): name = "b266295.txt" file = open(name, 'w') file.write('1' + ' ' + '1\n') file.write('2' + ' ' + '3\n') file.write('3' + ' ' + '5\n') file.write('4' + ' ' + '7\n') a, b, c, d = 1, 3, 5, 7 for i in range(5,10001): x=a+b+c+d while x%2==0: x /= 2 a, b, c, d = b, c, d, x file.write(str(i) + ' ' + str(int(d)) + '\n') file.close() main()
Formula
a(n) = (a(n-1) + a(n-2) + a(n-3) + a(n-4)) / 2^d, where 2^d is the largest power of 2 dividing a(n-1) + a(n-2) + a(n-3) + a(n-4).
a(n) = A000265(a(n-1) + a(n-2) + a(n-3) + a(n-4)). - Michel Marcus, Dec 29 2015
Comments