cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A266324 Decimal representation of the n-th iteration of the "Rule 19" elementary cellular automaton starting with a single ON (black) cell.

Original entry on oeis.org

1, 5, 0, 127, 0, 2047, 0, 32767, 0, 524287, 0, 8388607, 0, 134217727, 0, 2147483647, 0, 34359738367, 0, 549755813887, 0, 8796093022207, 0, 140737488355327, 0, 2251799813685247, 0, 36028797018963967, 0, 576460752303423487, 0, 9223372036854775807, 0
Offset: 0

Views

Author

Robert Price, Dec 27 2015

Keywords

References

  • S. Wolfram, A New Kind of Science, Wolfram Media, 2002; p. 55.

Crossrefs

Cf. A266155, A266323. Essentially the same as A266218.

Programs

  • Magma
    [n le 1 select 5^n else (1-(-1)^n)*(4*16^Floor(n/2)-1/2): n in [0..40]]; // Bruno Berselli, Dec 29 2015
    
  • Mathematica
    rule=19; rows=20; ca=CellularAutomaton[rule,{{1},0},rows-1,{All,All}]; (* Start with single black cell *) catri=Table[Take[ca[[k]],{rows-k+1,rows+k-1}],{k,1,rows}]; (* Truncated list of each row *) Table[FromDigits[catri[[k]],2],{k,1,rows}] (* Decimal Representation of Rows *)
  • Python
    print([(2*4**n - 1)*(n%2) + 0**n - 2*0**abs(n-1) for n in range(50)]) # Karl V. Keller, Jr., Sep 02 2021

Formula

From Colin Barker, Dec 28 2015 and Apr 15 2019: (Start)
a(n) = 17*a(n-2) - 16*a(n-4) for n>5.
G.f.: (1+5*x-17*x^2+42*x^3+16*x^4-32*x^5) / ((1-x)*(1+x)*(1-4*x)*(1+4*x)). (End)
a(n) = (1-(-1)^n)*(4*16^floor(n/2)-1/2) for n>1. - Bruno Berselli, Dec 29 2015
a(n) = (2*4^n - 1)*(n mod 2) + 0^n - 2*0^abs(n-1). - Karl V. Keller, Jr., Sep 02 2021
E.g.f.: 1 - 2*x - sinh(x) + 2*sinh(4*x). - Stefano Spezia, Sep 03 2021