A266324 Decimal representation of the n-th iteration of the "Rule 19" elementary cellular automaton starting with a single ON (black) cell.
1, 5, 0, 127, 0, 2047, 0, 32767, 0, 524287, 0, 8388607, 0, 134217727, 0, 2147483647, 0, 34359738367, 0, 549755813887, 0, 8796093022207, 0, 140737488355327, 0, 2251799813685247, 0, 36028797018963967, 0, 576460752303423487, 0, 9223372036854775807, 0
Offset: 0
References
- S. Wolfram, A New Kind of Science, Wolfram Media, 2002; p. 55.
Links
- Robert Price, Table of n, a(n) for n = 0..500
- Eric Weisstein's World of Mathematics, Elementary Cellular Automaton
- Index entries for sequences related to cellular automata
- Index to Elementary Cellular Automata
- Index entries for linear recurrences with constant coefficients, signature (0,17,0,-16).
Programs
-
Magma
[n le 1 select 5^n else (1-(-1)^n)*(4*16^Floor(n/2)-1/2): n in [0..40]]; // Bruno Berselli, Dec 29 2015
-
Mathematica
rule=19; rows=20; ca=CellularAutomaton[rule,{{1},0},rows-1,{All,All}]; (* Start with single black cell *) catri=Table[Take[ca[[k]],{rows-k+1,rows+k-1}],{k,1,rows}]; (* Truncated list of each row *) Table[FromDigits[catri[[k]],2],{k,1,rows}] (* Decimal Representation of Rows *)
-
Python
print([(2*4**n - 1)*(n%2) + 0**n - 2*0**abs(n-1) for n in range(50)]) # Karl V. Keller, Jr., Sep 02 2021
Formula
From Colin Barker, Dec 28 2015 and Apr 15 2019: (Start)
a(n) = 17*a(n-2) - 16*a(n-4) for n>5.
G.f.: (1+5*x-17*x^2+42*x^3+16*x^4-32*x^5) / ((1-x)*(1+x)*(1-4*x)*(1+4*x)). (End)
a(n) = (1-(-1)^n)*(4*16^floor(n/2)-1/2) for n>1. - Bruno Berselli, Dec 29 2015
a(n) = (2*4^n - 1)*(n mod 2) + 0^n - 2*0^abs(n-1). - Karl V. Keller, Jr., Sep 02 2021
E.g.f.: 1 - 2*x - sinh(x) + 2*sinh(4*x). - Stefano Spezia, Sep 03 2021