cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A266328 E.g.f. A(x) satisfies: A(x) = exp( Integral B(x) dx ) such that B(x) = exp(-x) * exp( Integral A(x) dx ), where the constant of integration is zero.

Original entry on oeis.org

1, 1, 1, 2, 6, 21, 92, 469, 2731, 17985, 131528, 1059616, 9319363, 88833422, 912393381, 10043727089, 117969438513, 1472593659884, 19467505081458, 271704942613323, 3992343851680466, 61603531051030691, 995949139457447931, 16835191741257445589, 296976010796327785530, 5457427389713208932740, 104308245862443706265341, 2070461793105333579698992, 42622090166454492404075635
Offset: 0

Views

Author

Paul D. Hanna, Jan 24 2016

Keywords

Comments

Compare to: G(x) = exp( Integral G(x) dx ) when G(x) = 1/(1-x).
What is lim_{n->oo} (a(n)/n!)^(1/n)? Example: (a(500)/500!)^(1/500) = 0.7353325805...
Limit_{n->oo} (a(n)/n!)^(1/n) = 1/Integral_{x=0..oo} 1/(exp(x) - x) dx = 0.73578196429164719984313538... - Vaclav Kotesovec, Aug 21 2017

Examples

			E.g.f.: A(x) = 1 + x + x^2/2! + 2*x^3/3! + 6*x^4/4! + 21*x^5/5! + 92*x^6/6! + 469*x^7/7! + 2731*x^8/8! + 17985*x^9/9! + 131528*x^10/10! + ...
such that log(A(x)) = Integral B(x) dx
where
B(x) = 1 + x^2/2! + x^3/3! + 5*x^4/4! + 16*x^5/5! + 76*x^6/6! + 393*x^7/7! + 2338*x^8/8! + 15647*x^9/9! + 115881*x^10/10! + ...
and A(x) and B(x) satisfy:
(1) A(x) = B'(x)/B(x) + 1,
(2) B(x) = A'(x)/A(x),
(3) B(x) = A(x) - log(A(x)),
(4) log(A(x)) = Integral B(x) dx,
(5) log(B(x)) = Integral A(x) dx - x.
The Series Reversion of log(A(x)) equals Integral 1/(exp(x) - x) dx:
Integral 1/(exp(x) - x) dx  =  x - x^3/3! - x^4/4! + 5*x^5/5! + 19*x^6/6! - 41*x^7/7! - 519*x^8/8! - 183*x^9/9! + 19223*x^10/10! + ... + A089148(n-1)*x^n/n! + ...
so that A( Integral 1/(exp(x) - x) dx ) = exp(x).
		

Crossrefs

Programs

  • PARI
    {a(n) = my(A=1+x,B=1+x); for(i=0,n, A = exp( intformal( B + x*O(x^n) ) ); B = exp( intformal( A - 1 ) ) ); n!*polcoeff(A,n)}
    for(n=0,30,print1(a(n),", "))
    
  • PARI
    {a(n) = n! * polcoeff( exp( serreverse( intformal( 1/(exp(x +x*O(x^n)) - x) ) )), n)}
    for(n=0,30,print1(a(n),", "))
    
  • PARI
    Vec( serlaplace( exp( serreverse( intformal( 1/(exp(x +x*O(x^25)) - x)))))) \\ Joerg Arndt, Dec 26 2023

Formula

E.g.f. A(x) satisfies:
(1) A(x) = exp( Integral A(x) - log(A(x)) dx ).
(2) A(x) = log(A(x)) + A'(x)/A(x).
(3) log(A(x)) = exp(-x) * Integral exp(x)*A(x) dx.
(4) A(x) = exp( Series_Reversion( Integral 1/(exp(x) - x) dx ) ).
a(n) ~ c^(n+1) * n!, where c = 1/Integral_{x=0..oo} 1/(exp(x) - x) dx = 0.7357819642916471998431353808137704665788888148929882090175... - Vaclav Kotesovec, Aug 21 2017
Conjecture: a(n) = R(n-1, 0) for n > 0 with a(0) = 1 where R(n, q) = R(n-1, q+1) + Sum_{j=0..q-1} binomial(q+1, j)*R(n-1, j) for n > 0, q >= 0 with R(0, q) = 1 for q >= 0. - Mikhail Kurkov, Dec 26 2023