A266334 G.f. = b(2)*b(6)*b(10)/(x^14+x^12-x^5-x^3-x+1), where b(k) = (1-x^k)/(1-x).
1, 4, 9, 17, 30, 51, 84, 135, 215, 341, 538, 846, 1328, 2082, 3262, 5108, 7997, 12519, 19595, 30668, 47996, 75112, 117546, 183950, 287864, 450478, 704950, 1103170, 1726339, 2701526, 4227582, 6615684, 10352789, 16200930, 25352598, 39673907, 62085111, 97156070
Offset: 0
Links
- Colin Barker, Table of n, a(n) for n = 0..1000
- Maxim Chapovalov, Dimitry Leites, and Rafael Stekolshchik, The Poincaré series [or Poincare series] of the hyperbolic Coxeter groups with finite volume of fundamental domains, arXiv:0906.1596 [math.RT], 2009.
- Maxim Chapovalov, Dimitry Leites, and Rafael Stekolshchik, The Poincaré series [or Poincare series] of the hyperbolic Coxeter groups with finite volume of fundamental domains, Journal of Nonlinear Mathematical Physics 17.supp01 (2010), 169-215.
- Index entries for linear recurrences with constant coefficients, signature (1,0,1,0,1,0,0,0,0,0,0,-1,0,-1).
Crossrefs
Cf. similar sequences listed in A265055.
Programs
-
Magma
/* By definition: */ m:=40; R
:=PowerSeriesRing(Integers(), m); b:=func ; Coefficients(R!(b(2)*b(6)*b(10)/(x^14+x^12-x^5-x^3-x+1))); // Bruno Berselli, Dec 29 2015 -
Maple
gf:= b(2)*b(6)*b(10)/(x^14+x^12-x^5-x^3-x+1): b:= k->(1-x^k)/(1-x): a:= n-> coeff(series(gf, x, n+1), x, n): seq(a(n), n=0..40);
-
Mathematica
b[k_] := (1 - x^k)/(1 - x); CoefficientList[Series[b[2] b[6] b[10]/(x^14 + x^12 - x^5 - x^3 - x + 1), {x, 0, 40}], x] (* Bruno Berselli, Dec 29 2015 *)
Comments