A266355 Expansion of b(2)*b(4)*b(6)/(1-x-x^2-x^4+x^6+x^8), where b(k) = (1-x^k)/(1-x).
1, 4, 10, 21, 40, 73, 129, 224, 385, 658, 1122, 1910, 3248, 5519, 9375, 15922, 27038, 45911, 77954, 132358, 224727, 381555, 647823, 1099903, 1867461, 3170650, 5383253, 9139893, 15518057, 26347142, 44733168, 75949650, 128950161, 218936410, 371718429, 631117454
Offset: 0
Links
- Colin Barker, Table of n, a(n) for n = 0..1000
- Maxim Chapovalov, Dimitry Leites, and Rafael Stekolshchik, The Poincaré series [or Poincare series] of the hyperbolic Coxeter groups with finite volume of fundamental domains, arXiv:0906.1596 [math.RT], 2009, page 31.
- Maxim Chapovalov, Dimitry Leites, and Rafael Stekolshchik, The Poincaré series [or Poincare series] of the hyperbolic Coxeter groups with finite volume of fundamental domains, Journal of Nonlinear Mathematical Physics, Volume 17, Supplement 1 (2010), page 186.
- Index entries for linear recurrences with constant coefficients, signature (1,1,0,1,0,-1,0,-1).
Crossrefs
Cf. similar sequences listed in A265055.
Programs
-
Magma
/* By definition: */ m:=40; R
:=PowerSeriesRing(Integers(), m); b:=func ; Coefficients(R!(b(2)*b(4)*b(6)/(1-x-x^2-x^4+x^6+x^8))); -
Mathematica
CoefficientList[Series[(1 + x^2) (1 - x + x^2) (1 + x + x^2) (1 + x)^3/((1 - x) (1 - x^2 - x^3 - 2 x^4 - 2 x^5 - x^6 - x^7)), {x, 0, 40}], x] LinearRecurrence[{1,1,0,1,0,-1,0,-1},{1,4,10,21,40,73,129,224,385,658},40] (* Harvey P. Dale, Apr 04 2019 *)
Formula
G.f.: (1 + x^2)*(1 - x + x^2)*(1 + x + x^2)*(1 + x)^3/((1 - x)*(1 - x^2 - x^3 - 2*x^4 - 2*x^5 - x^6 - x^7)).
a(n) = a(n-1) + a(n-2) + a(n-4) - a(n-6) - a(n-8) for n>9.
Comments