cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A266367 Expansion of b(2)*b(4)/(1 - 2*x - 2*x^3 + 3*x^4), where b(k) = (1-x^k)/(1-x).

Original entry on oeis.org

1, 4, 10, 24, 54, 116, 250, 536, 1142, 2436, 5194, 11064, 23574, 50228, 107002, 227960, 485654, 1034628, 2204170, 4695768, 10003830, 21312116, 45403258, 96726872, 206066486, 439003140, 935250250, 1992452856, 4244712534, 9042916148, 19264987258, 41042041016, 87435776726
Offset: 0

Views

Author

Bruno Berselli, Dec 28 2015

Keywords

Comments

This is the Poincaré series [or Poincare series] for the quasi-Lannér diagram QL4_16 - see Table 7.8 in Maxim Chapovalov, Dimitry Leites and Rafael Stekolshchik (2009), or equivalently Table 6 in the shorter version, Maxim Chapovalov, Dimitry Leites and Rafael Stekolshchik (2010).

Crossrefs

Cf. similar sequences listed in A265055.

Programs

  • Magma
    /* By definition: */ m:=40; R:=PowerSeriesRing(Integers(), m); b:=func; Coefficients(R!(b(2)*b(4)/(1-2*x-2*x^3+3*x^4)));
  • Mathematica
    CoefficientList[Series[(1 + x)^2 (1 + x^2)/((1 - x) (1 - x - x^2 - 3 x^3)), {x, 0, 40}], x]
    LinearRecurrence[{2,0,2,-3},{1,4,10,24,54},40] (* Harvey P. Dale, Mar 22 2016 *)

Formula

G.f.: (1 + x)^2*(1 + x^2)/((1 - x)*(1 - x - x^2 - 3*x^3)).
a(n) = 2*a(n-1) + 2*a(n-3) - 3*a(n-4) for n>4.