A266372 G.f. = b(2)*b(4)*b(6)/(x^9+x^8+x^7+x^6-x^5-x^4-x^3-x^2-x+1), where b(k) = (1-x^k)/(1-x).
1, 4, 10, 22, 45, 90, 177, 344, 666, 1286, 2482, 4788, 9232, 17798, 34309, 66136, 127485, 245738, 473678, 913046, 1759956, 3392428, 6539118, 12604558, 24296069, 46832182, 90271937, 174004756, 335404954, 646513838, 1246195494, 2402119052, 4630233348, 8925061742
Offset: 0
Links
- Colin Barker, Table of n, a(n) for n = 0..1000
- Maxim Chapovalov, Dimitry Leites, and Rafael Stekolshchik, The Poincaré series [or Poincare series] of the hyperbolic Coxeter groups with finite volume of fundamental domains, arXiv:0906.1596 [math.RT], 2009.
- Maxim Chapovalov, Dimitry Leites, and Rafael Stekolshchik, The Poincaré series [or Poincare series] of the hyperbolic Coxeter groups with finite volume of fundamental domains, Journal of Nonlinear Mathematical Physics 17.supp01 (2010), 169-215.
- Index entries for linear recurrences with constant coefficients, signature (1,1,1,1,1,-1,-1,-1,-1).
Crossrefs
Cf. similar sequences listed in A265055.
Programs
-
Magma
/* By definition: */ m:=40; R
:=PowerSeriesRing(Integers(), m); b:=func ; Coefficients(R!(b(2)*b(4)*b(6)/(x^9+x^8+x^7+x^6-x^5-x^4-x^3-x^2-x+1))); // Bruno Berselli, Dec 29 2015 -
Maple
gf:= b(2)*b(4)*b(6)/(x^9+x^8+x^7+x^6-x^5-x^4-x^3-x^2-x+1): b:= k->(1-x^k)/(1-x): a:= n-> coeff(series(gf, x, n+1), x, n): seq(a(n), n=0..40);
-
Mathematica
b[k_] := (1 - x^k)/(1 - x); CoefficientList[Series[b[2] b[4] b[6]/(x^9 + x^8 + x^7 + x^6 - x^5 - x^4 - x^3 - x^2 - x + 1), {x, 0, 40}], x] (* Bruno Berselli, Dec 28 2015 *)
Comments