A266375 G.f. = b(2)*b(4)*b(6)/(x^8+x^7-x^3-x^2-x+1), where b(k) = (1-x^k)/(1-x).
1, 4, 10, 22, 44, 84, 157, 289, 528, 961, 1746, 3169, 5748, 10422, 18893, 34246, 62072, 112504, 203907, 369566, 669807, 1213965, 2200199, 3987653, 7227241, 13098682, 23740103, 43026653, 77981666, 141334258, 256154725, 464255755, 841418815, 1524990510
Offset: 0
Links
- Colin Barker, Table of n, a(n) for n = 0..1000
- Maxim Chapovalov, Dimitry Leites, and Rafael Stekolshchik, The Poincaré series [or Poincare series] of the hyperbolic Coxeter groups with finite volume of fundamental domains, arXiv:0906.1596 [math.RT], 2009.
- Maxim Chapovalov, Dimitry Leites, and Rafael Stekolshchik, The Poincaré series [or Poincare series] of the hyperbolic Coxeter groups with finite volume of fundamental domains, Journal of Nonlinear Mathematical Physics 17.supp01 (2010), 169-215.
- Index entries for linear recurrences with constant coefficients, signature (2,0,-1,1,0,-1).
Crossrefs
Cf. similar sequences listed in A265055.
Programs
-
Magma
/* By definition: */ m:=40; R
:=PowerSeriesRing(Integers(), m); b:=func ; Coefficients(R!(b(2)*b(4)*b(6)/(x^8+x^7-x^3-x^2-x+1))); // Bruno Berselli, Dec 29 2015 -
Maple
gf:= b(2)*b(4)*b(6)/(x^8+x^7-x^3-x^2-x+1): b:= k->(1-x^k)/(1-x): a:= n-> coeff(series(gf, x, n+1), x, n): seq(a(n), n=0..40);
-
Mathematica
b[k_] := (1 - x^k)/(1 - x); CoefficientList[Series[b[2] b[4] b[6]/(x^8 + x^7 - x^3 - x^2 - x + 1), {x, 0, 40}], x] (* Bruno Berselli, Dec 28 2015 *)
Comments