A266402 Self-inverse permutation of natural numbers: a(n) = A064989(A030101(A003961(n))).
1, 2, 3, 4, 5, 6, 11, 8, 17, 10, 7, 12, 13, 14, 25, 38, 9, 30, 23, 20, 53, 34, 19, 36, 15, 26, 51, 28, 29, 18, 37, 76, 33, 22, 83, 24, 31, 16, 39, 40, 47, 42, 59, 46, 75, 44, 41, 218, 73, 122, 27, 52, 21, 188, 107, 56, 101, 58, 43, 100, 89, 74, 397, 152, 65, 66, 109, 134, 131, 70, 71, 514, 49, 62, 45, 32, 239, 78, 97, 120, 563, 82, 35
Offset: 1
Links
Crossrefs
Programs
-
Mathematica
f[n_] := Times @@ Power[Which[# == 1, 1, # == 2, 1, True, NextPrime[#, -1]] & /@ First@ #, Last@ #] &@ Transpose @FactorInteger@ n; g[n_] := FromDigits[Reverse@ IntegerDigits[n, 2], 2] 2^IntegerExponent[n, 2]; h[p_?PrimeQ] := h[p] = Prime[PrimePi@ p + 1]; h[1] = 1; h[n_] := h[n] = Times @@ (h[First@ #]^Last@ # &) /@ FactorInteger@ n; Table[f@ g@ h@ n, {n, 83}] (* A266402, after Jean-François Alcover at A003961 and Ivan Neretin at A057889 *)
-
PARI
A030101(n) = if(n<1,0,subst(Polrev(binary(n)),x,2)); A003961(n) = my(f = factor(n)); for (i=1, #f~, f[i, 1] = nextprime(f[i, 1]+1)); factorback(f); \\ Using code of Michel Marcus A064989(n) = {my(f); f = factor(n); if((n>1 && f[1,1]==2), f[1,2] = 0); for (i=1, #f~, f[i,1] = precprime(f[i,1]-1)); factorback(f)}; A266402 = n -> A064989(A030101(A003961(n))); for(n=1, 8191, write("b266402.txt", n, " ", A266402(n)));
-
Scheme
(define (A266402 n) (A064989 (A057889 (A003961 n))))
Comments