A266462 The number of conjugacy classes of invertible n X n matrices over GF(2) which are squares of other such matrices.
1, 1, 2, 5, 10, 20, 41, 82, 166, 334, 667, 1336, 2682, 5360, 10724, 21467, 42936, 85876, 171786, 343574, 687184, 1374427, 2748852, 5497766, 10995706, 21991402, 43982908, 87966150, 175932383, 351864964, 703730584, 1407461288, 2814923196, 5629847656, 11259695532
Offset: 0
Keywords
Links
- N. J. A. Sloane, Table of n, a(n) for n = 0..60 [Based on the table in Miller (2016)]
- Victor S. Miller, Counting Matrices that are Squares, arXiv:1606.09299 [math.GR], 2016.
- Index entries for matrices, binary, which are squares
Crossrefs
Cf. A006950.
Programs
-
Mathematica
terms = 35; CoefficientList[Product[(1-2x^(2n))(1-x^(2n))/((1-2x^n) (1-2x^(4n))(1+x^(2n-1))), {n, 1, terms}] + O[x]^terms, x] (* Jean-François Alcover, Aug 06 2018 *)
Formula
G.f.: Product_{n>=1} (1-2*x^(2*n))*(1-x^(2*n))/((1-2*x^n)*(1-2*x^(4*n))*(1+x^(2*n-1))).
Extensions
More terms from Alois P. Heinz, Dec 29 2015
Comments