cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A225371 a(n) = number of squares in M(n,2), the ring of n X n matrices over GF(2).

Original entry on oeis.org

1, 2, 10, 260, 31096, 13711952, 28275659056, 224402782202048, 7293836994286696576, 952002419516769475035392, 497678654312172407869125822976, 1044660329769242614113093804053562368, 8745525723307044762290950664928498588583936
Offset: 0

Views

Author

N. J. A. Sloane, May 07 2013

Keywords

Comments

a(0)-a(4) computed by W. Edwin Clark, May 07 2013.
A226321 is a similar sequence which counts the real {0,1} matrices which are the square of a {0,1} matrix. - Giovanni Resta, Jun 03 2013

Crossrefs

Programs

  • PARI
    a(n)=#vecsort(lift(vector(2^n^2,k,matrix(n,n,i,j,bittest(k,(i-1)*n+j-1))^2*Mod(1,2))),,8) \\ Charles R Greathouse IV, May 07 2013
    
  • PARI
    ZM(k)=matrix(n,n,i,j,bittest(k,(i-1)*n+j-1))*Mod(1,2)
    MZ(M)=my(n=matsize(M)[1]);sum(i=1,n,sum(j=1,n,M[i,j]<<((i-1)*n+j-1)))
    a(n)=#vecsort(vector(2^n^2,i,MZ(lift(ZM(i,n)^2))),,8) \\ Charles R Greathouse IV, May 07 2013

Extensions

a(5)-a(6) from Giovanni Resta, May 08 2013
a(7)-a(30) from Victor S. Miller, May 24 2013

A274313 The number of conjugacy classes of n X n matrices over GF(2) which are squares of other such matrices.

Original entry on oeis.org

1, 2, 4, 10, 22, 46, 96, 198, 406, 826, 1668, 3362, 6770, 13590, 27248, 54614, 109378, 218946, 438180, 876738, 1753998, 3508726, 7018368, 14038006, 28077846, 56157954, 112318900, 224642090, 449289666, 898586438, 1797182704, 3594378014, 7188772666, 14377567834, 28755164100, 57510365698, 115020782350, 230041628622, 460083340304, 920166792942
Offset: 0

Views

Author

N. J. A. Sloane, Jun 25 2016

Keywords

Crossrefs

Cf. A266462.

Programs

  • Magma
    m:=40; R:=PowerSeriesRing(Integers(), m); Coefficients(R!( (&*[(1-2*x^(2*k))/((1-2*x^k)*(1-2*x^(4*k))): k in [1..m/2]]))); // G. C. Greubel, Dec 16 2018
    
  • Maple
    seq(coeff(series(mul((1-2*x^(2*k))/((1-2*x^k)*(1-2*x^(4*k))), k=1..n),x,n+1), x, n), n = 0 .. 40); # Muniru A Asiru, Dec 13 2018
  • Mathematica
    terms = 40;
    Product[(1-2z^(2n))/(1-2z^n)/(1-2z^(4n)), {n, 1, terms}] + O[z]^terms // CoefficientList[#, z]& (* Jean-François Alcover, Dec 12 2018 *)
  • PARI
    seq(n)=Vec(prod(i=1, n, (1-2*x^(2*i))/((1-2*x^i)*(1-2*x^(4*i)) + O(x*x^n)))) \\ Andrew Howroyd, Dec 12 2018
    
  • Sage
    m=40; s=(prod((1-2*x^(2*k))/((1-2*x^k)*(1-2*x^(4*k))) for k in (1..m/2))).series(x, m); s.coefficients(x, sparse=False) # G. C. Greubel, Dec 16 2018

Formula

G.f.: Product_{n>=1} (1-2*z^(2*n))/((1-2*z^n)*(1-2*z^(4*n))). - Jean-François Alcover, Dec 12 2018, after Victor S. Miller.

A274314 a(n) = number of squares in GL(n,2), the ring of invertible n X n matrices over GF(2).

Original entry on oeis.org

1, 1, 3, 126, 11340, 5940840, 12076523928, 95052257647200, 3153668941285723200, 406198470650573931200640, 215366179177149634500004545792, 447870507819487666185959047316144640, 3770394197251690930118967532374966498493440, 126205342254129164806148123600990735262978861434880, 16960349752279776751561660450391351891796348875427924676608
Offset: 0

Views

Author

N. J. A. Sloane, Jun 25 2016

Keywords

Crossrefs

Showing 1-3 of 3 results.