cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A266464 Number of n X 2 binary arrays with rows and columns lexicographically nondecreasing and column sums nonincreasing.

Original entry on oeis.org

1, 2, 4, 7, 12, 19, 29, 42, 59, 80, 106, 137, 174, 217, 267, 324, 389, 462, 544, 635, 736, 847, 969, 1102, 1247, 1404, 1574, 1757, 1954, 2165, 2391, 2632, 2889, 3162, 3452, 3759, 4084, 4427, 4789, 5170, 5571, 5992, 6434, 6897, 7382, 7889, 8419, 8972, 9549, 10150
Offset: 0

Views

Author

R. H. Hardin, Dec 29 2015

Keywords

Examples

			Some solutions for n=4:
..0..0....0..0....0..1....0..0....0..1....0..0....1..1....0..1....0..0....0..1
..0..0....0..0....0..1....1..1....1..0....0..0....1..1....1..0....0..0....1..0
..0..1....0..0....1..0....1..1....1..1....1..1....1..1....1..0....0..0....1..0
..1..0....1..1....1..0....1..1....1..1....1..1....1..1....1..1....0..0....1..0
		

Crossrefs

Column 2 of A266470.
Partial sums of A033638.

Programs

  • Maple
    a:= proc(n) option remember;
         `if`(n<0, 0, 1+a(n-1)+floor(n^2/4))
        end:
    seq(a(n), n=0..100);  # Alois P. Heinz, Dec 27 2023

Formula

a(n) = 3*a(n-1) - 2*a(n-2) - 2*a(n-3) + 3*a(n-4) -a(n-5).
From Colin Barker, Mar 21 2018: (Start)
G.f.: (x^3-x+1)/((x+1)*(x-1)^4).
a(n) = (2*n^3 + 3*n^2 + 22*n + 24) / 24 for n even.
a(n) = (2*n^3 + 3*n^2 + 22*n + 21) / 24 for n odd.
(End)

Extensions

a(0)=1 prepended by Alois P. Heinz, Dec 27 2023