A266464 Number of n X 2 binary arrays with rows and columns lexicographically nondecreasing and column sums nonincreasing.
1, 2, 4, 7, 12, 19, 29, 42, 59, 80, 106, 137, 174, 217, 267, 324, 389, 462, 544, 635, 736, 847, 969, 1102, 1247, 1404, 1574, 1757, 1954, 2165, 2391, 2632, 2889, 3162, 3452, 3759, 4084, 4427, 4789, 5170, 5571, 5992, 6434, 6897, 7382, 7889, 8419, 8972, 9549, 10150
Offset: 0
Examples
Some solutions for n=4: ..0..0....0..0....0..1....0..0....0..1....0..0....1..1....0..1....0..0....0..1 ..0..0....0..0....0..1....1..1....1..0....0..0....1..1....1..0....0..0....1..0 ..0..1....0..0....1..0....1..1....1..1....1..1....1..1....1..0....0..0....1..0 ..1..0....1..1....1..0....1..1....1..1....1..1....1..1....1..1....0..0....1..0
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..10000 (terms n=1..210 from R. H. Hardin)
Programs
-
Maple
a:= proc(n) option remember; `if`(n<0, 0, 1+a(n-1)+floor(n^2/4)) end: seq(a(n), n=0..100); # Alois P. Heinz, Dec 27 2023
Formula
a(n) = 3*a(n-1) - 2*a(n-2) - 2*a(n-3) + 3*a(n-4) -a(n-5).
From Colin Barker, Mar 21 2018: (Start)
G.f.: (x^3-x+1)/((x+1)*(x-1)^4).
a(n) = (2*n^3 + 3*n^2 + 22*n + 24) / 24 for n even.
a(n) = (2*n^3 + 3*n^2 + 22*n + 21) / 24 for n odd.
(End)
Extensions
a(0)=1 prepended by Alois P. Heinz, Dec 27 2023