A266490 E.g.f. A(x) satisfies: A(x) = exp( Integral B(x) dx ) such that B(x) = exp(2*x) * exp( Integral A(x) dx ), where the constant of integration is zero.
1, 1, 4, 20, 126, 972, 8876, 93580, 1119328, 14986944, 222184136, 3614288272, 64022264176, 1226914925840, 25295189791296, 558317369479616, 13136590271813856, 328243850207690432, 8680766764223956416, 242245419192494844096, 7113910552105144027136, 219304957649505551899136, 7081169542830272102170752, 238996807468258679150596352
Offset: 0
Keywords
Examples
E.g.f.: A(x) = 1 + x + 4*x^2/2! + 20*x^3/3! + 126*x^4/4! + 972*x^5/5! + 8876*x^6/6! + 93580*x^7/7! + 1119328*x^8/8! + 14986944*x^9/9! + 222184136*x^10/10! +... such that log(A(x)) = Integral B(x) dx where B(x) = 1 + 3*x + 10*x^2/2! + 40*x^3/3! + 206*x^4/4! + 1384*x^5/5! + 11644*x^6/6! + 116868*x^7/7! + 1353064*x^8/8! + 17693072*x^9/9! + 257570280*x^10/10! +... and A(x) and B(x) satisfy: (1) A(x) = B'(x)/B(x) - 2, (2) B(x) = A'(x)/A(x), (3) B(x) = A(x) + 2*log(A(x)), (4) log(A(x)) = Integral B(x) dx, (5) log(B(x)) = Integral A(x) dx + 2*x. The Series Reversion of log(A(x)) equals Integral 1/(exp(x) + 2*x) dx: Integral 1/(exp(x) + 2*x) dx = x - 3*x^2/2! + 17*x^3/3! - 145*x^4/4! + 1649*x^5/5! - 23441*x^6/6! + 399865*x^7/7! - 7957881*x^8/8! + 180997857*x^9/9! - 4631289697*x^10/10! +... so that A( Integral 1/(exp(x) + 2*x) dx ) = exp(x).
Links
- Vaclav Kotesovec, Table of n, a(n) for n = 0..200
Programs
-
Mathematica
a[ n_] := a[n] = If[ n < 1, Boole[n == 0], Sum[ Binomial[n - 1, k - 1] a[n - k] Sum[ 2^(j - 1) a[k - j], {j, k}], {k, n}]]; (* Michael Somos, Aug 08 2017 *)
-
PARI
{a(n) = my(A=1+x, B=1+x); for(i=0, n, A = exp( intformal( B + x*O(x^n) ) ); B = exp( intformal( 2 + A ) ) ); n!*polcoeff(A, n)} for(n=0, 30, print1(a(n), ", "))
-
PARI
{a(n) = n! * polcoeff( exp( serreverse( intformal( 1/(exp(x +x*O(x^n)) + 2*x) ) )), n)} for(n=0, 30, print1(a(n), ", "))
Formula
E.g.f. A(x) satisfies:
(1) A(x) = exp( Integral A(x) + 2*log(A(x)) dx ).
(2) A(x) = A'(x)/A(x) - 2*log(A(x)).
(3) log(A(x)) = exp(2*x) * Integral exp(-2*x)*A(x) dx.
(4) A(x) = exp( Series_Reversion( Integral 1/(exp(x) + 2*x) dx ) ).
a(n) ~ c^(n+1) * n!, where c = 1/Integral_{x=0..infinity} 1/(2*x + exp(x)) dx = 1.4650202775490107369040248583790383461628786237838809798971... - Vaclav Kotesovec, Aug 21 2017
Comments