cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A266507 a(n) = 6*a(n - 1) - a(n - 2) with a(0) = 2, a(1) = 8.

Original entry on oeis.org

2, 8, 46, 268, 1562, 9104, 53062, 309268, 1802546, 10506008, 61233502, 356895004, 2080136522, 12123924128, 70663408246, 411856525348, 2400475743842, 13990997937704, 81545511882382, 475282073356588, 2770146928257146, 16145599496186288, 94103450048860582
Offset: 0

Views

Author

Raphie Frank, Dec 30 2015

Keywords

Comments

Bisection of A078343 = A078343(2*n + 1).
Quadrisection of A266504 = A266504(4*n + 1).
Octasection of A266506 = A266506(8*n + 2).

Crossrefs

Bisection of A078343 = A078343(2n + 1).
Quadrisection of A266504 = A266504(4n + 1).
Octasection of A266506 = A266506(8n + 2).
Equals 2*A038723(n).

Programs

  • Magma
    I:=[2,8]; [n le 2 select I[n] else 6*Self(n-1)-Self(n-2): n in [1..70]]; // Vincenzo Librandi, Dec 31 2015
    
  • Mathematica
    LinearRecurrence[{6, -1}, {2, 8}, 70] (* Vincenzo Librandi, Dec 31 2015 *)
    Table[SeriesCoefficient[2 (1 - 2 x)/(1 - 6 x + x^2), {x, 0, n}], {n, 0, 22}] (* Michael De Vlieger, Dec 31 2015 *)
  • PARI
    Vec(2*(1-2*x)/(1-6*x+x^2) + O(x^30)) \\ Colin Barker, Dec 31 2015

Formula

a(n) = (-sqrt(2)*(1+sqrt(2))^(2*n+1) - 3 *(1-sqrt(2))^(2*n+1) - sqrt(2)*(1-sqrt(2))^(2*n+1) + 3*(1+sqrt(2))^(2*n+1))/sqrt(8).
G.f.: 2*(1-2*x) / (1-6*x+x^2). - Colin Barker, Dec 31 2015