A266559 Decimal expansion of the generalized Glaisher-Kinkelin constant A(12).
9, 3, 8, 6, 8, 9, 4, 4, 5, 5, 9, 6, 0, 1, 2, 5, 8, 5, 1, 5, 2, 9, 6, 5, 7, 8, 1, 3, 2, 0, 6, 7, 6, 7, 1, 8, 3, 3, 3, 2, 5, 8, 7, 6, 8, 5, 2, 1, 8, 3, 5, 0, 0, 9, 8, 6, 6, 3, 9, 0, 7, 1, 6, 3, 4, 2, 4, 0, 5, 8, 8, 3, 7, 3, 8, 0, 1, 5, 1, 1, 7, 0, 8, 6, 7, 6, 4, 0, 2, 1
Offset: 0
Examples
0.9386894455960125851529657813206767183332587685218350098663907...
Links
- G. C. Greubel, Table of n, a(n) for n = 0..2000
Crossrefs
Cf. A019727 (A(0)), A074962 (A(1)), A243262 (A(2)), A243263 (A(3)), A243264 (A(4)), A243265 (A(5)), A266553 (A(6)), A266554 (A(7)), A266555 (A(8)), A266556 (A(9)), A266557 (A(10)), A266558 (A(11)), A260662 (A(13)), A266560 (A(14)), A266562 (A(15)), A266563 (A(16)), A266564 (A(17)), A266565 (A(18)), A266566 (A(19)), A266567 (A(20)).
Programs
-
Mathematica
RealDigits[Exp[N[(BernoulliB[12]/4)*(Zeta[13]/Zeta[12]),200]]][[1]] (* Program amended by Harvey P. Dale, Aug 16 2021 *)
Formula
A(k) = exp(H(k)*B(k+1)/(k+1) - zeta'(-k)), where B(k) is the k-th Bernoulli number, H(k) the k-th harmonic number, and zeta'(x) is the derivative of the Riemann zeta function.
A(12) = exp(-zeta'(-12)) = exp((B(12)/4)*(zeta(13)/zeta(12))).
A(12) = exp(-12! * Zeta(13) / (2^13 * Pi^12)). - Vaclav Kotesovec, Jan 01 2016
Comments