cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-6 of 6 results.

A100405 Number of partitions of n where every part appears more than two times.

Original entry on oeis.org

1, 0, 0, 1, 1, 1, 2, 1, 2, 3, 3, 3, 7, 5, 6, 11, 10, 10, 17, 15, 20, 26, 25, 29, 44, 41, 47, 63, 67, 72, 99, 97, 114, 143, 148, 168, 216, 216, 248, 306, 328, 358, 443, 462, 527, 629, 665, 739, 898, 936, 1055, 1238, 1330, 1465, 1727, 1837, 2055, 2366, 2543, 2808, 3274
Offset: 0

Views

Author

Vladeta Jovovic, Jan 11 2005

Keywords

Examples

			a(6)=2 because we have [2,2,2] and [1,1,1,1,1,1].
		

Crossrefs

Programs

  • Maple
    G:=product((1+x^(3*k)/(1-x^k)),k=1..30): Gser:=series(G,x=0,80): seq(coeff(Gser,x,n),n=0..70); # Emeric Deutsch, Aug 06 2005
    # second Maple program:
    b:= proc(n, i) option remember; `if`(n=0, 1, `if`(i<1, 0,
          add(b(n-i*j, i-1), j=[0, $3..iquo(n, i)])))
        end:
    a:= n-> b(n$2):
    seq(a(n), n=0..70);  # Alois P. Heinz, Aug 20 2019
  • Mathematica
    nmax = 100; Rest[CoefficientList[Series[Product[1 + x^(3*k)/(1-x^k), {k, 1, nmax}], {x, 0, nmax}], x]] (* Vaclav Kotesovec, Nov 28 2015 *)

Formula

G.f.: Product_{k>0} (1+x^(3*k)/(1-x^k)). More generally, g.f. for number of partitions of n where every part appears more than m times is Product_{k>0} (1+x^((m+1)*k)/(1-x^k)).
a(n) ~ sqrt(Pi^2 + 6*c) * exp(sqrt((2*Pi^2/3 + 4*c)*n)) / (4*sqrt(3)*Pi*n), where c = Integral_{0..infinity} log(1 - exp(-x) + exp(-3*x)) dx = -0.77271248407593487127235205445116662610863126869049971822566... . - Vaclav Kotesovec, Jan 05 2016

Extensions

More terms from Emeric Deutsch, Aug 06 2005
a(0)=1 prepended by Alois P. Heinz, Aug 20 2019

A266648 Expansion of Product_{k>=1} (1 + x^(3*k)) / (1 - x^k).

Original entry on oeis.org

1, 1, 2, 4, 6, 9, 15, 21, 31, 46, 64, 89, 126, 170, 231, 314, 417, 552, 733, 955, 1244, 1617, 2079, 2665, 3413, 4331, 5485, 6931, 8704, 10901, 13629, 16949, 21033, 26045, 32123, 39529, 48553, 59429, 72599, 88518, 107624, 130599, 158209, 191175, 230611, 277717, 333730, 400375, 479598, 573386, 684481
Offset: 0

Views

Author

Vaclav Kotesovec, Jan 02 2016

Keywords

Comments

a(n) is the number of overpartitions wherein only parts that are a multiple of three may be overlined. - Alois P. Heinz, Feb 03 2025

Crossrefs

Programs

  • Maple
    b:= proc(n, i) option remember; `if`(n=0, 1, `if`(i<1, 0,
          b(n, i-1)+`if`(irem(i, 3)=0, 2, 1)*add(b(n-i*j, i-1), j=1..n/i)))
        end:
    a:= n-> b(n$2):
    seq(a(n), n=0..50);  # Alois P. Heinz, Feb 03 2025
  • Mathematica
    nmax = 50; CoefficientList[Series[Product[(1+x^(3*k))/(1-x^k), {k, 1, nmax}], {x, 0, nmax}], x]

Formula

a(n) ~ sqrt(7) * exp(sqrt(7*n)*Pi/3) / (24*n).

A264905 Expansion of Product_{k>=1} (1 + x^k + x^(3*k)).

Original entry on oeis.org

1, 1, 1, 3, 2, 4, 6, 7, 8, 13, 16, 18, 26, 29, 38, 49, 58, 68, 90, 101, 125, 156, 181, 214, 263, 304, 358, 435, 505, 589, 701, 812, 939, 1115, 1275, 1485, 1736, 1991, 2286, 2667, 3038, 3489, 4028, 4588, 5240, 6036, 6833, 7787, 8904, 10078, 11429, 13020, 14698
Offset: 0

Views

Author

Vaclav Kotesovec, Nov 28 2015

Keywords

Crossrefs

Programs

  • Mathematica
    nmax = 100; CoefficientList[Series[Product[1+x^k+x^(3*k), {k,1,nmax}], {x,0,nmax}], x]
    nmax = 100; p = ConstantArray[0, nmax + 1]; p[[1]] = 1; p[[2]] = 1; p[[4]] = 1; Do[Do[p[[j+1]] = p[[j+1]] + p[[j - k + 1]] + If[j < 3*k, 0, p[[j - 3*k + 1]]], {j, nmax, k, -1}];, {k, 2, nmax}]; p (* Vaclav Kotesovec, May 10 2018 *)

Formula

a(n) ~ c^(1/4) * exp(2*sqrt(c*n)) / (2*sqrt(3*Pi)*n^(3/4)), where c = Integral_{0..infinity} log(1 + exp(-x) + exp(-3*x)) dx = 0.9953865985263189816963357718655148864441174218433250148867... . - Vaclav Kotesovec, Jan 05 2016

A266686 Expansion of Product_{k>=1} (1 + x^k - x^(3*k)).

Original entry on oeis.org

1, 1, 1, 1, 2, 2, 2, 3, 4, 5, 4, 6, 8, 9, 10, 11, 14, 16, 18, 21, 25, 28, 31, 36, 41, 48, 52, 59, 69, 77, 85, 96, 109, 121, 133, 151, 172, 189, 208, 231, 260, 287, 316, 350, 390, 432, 471, 521, 578, 636, 695, 764, 842, 924, 1009, 1107, 1218, 1330, 1449, 1584
Offset: 0

Views

Author

Vaclav Kotesovec, Jan 02 2016

Keywords

Crossrefs

Programs

  • Mathematica
    nmax=60; CoefficientList[Series[Product[1+x^k-x^(3*k), {k, 1, nmax}], {x, 0, nmax}], x]
    nmax = 100; p = ConstantArray[0, nmax + 1]; p[[1]] = 1; p[[2]] = 1; p[[4]] = -1; Do[Do[p[[j+1]] = p[[j+1]] + p[[j - k + 1]] - If[j < 3*k, 0, p[[j - 3*k + 1]]], {j, nmax, k, -1}];, {k, 2, nmax}]; p (* Vaclav Kotesovec, May 10 2018 *)

Formula

a(n) ~ c^(1/4) * exp(2*sqrt(c*n)) / (2*sqrt(Pi)*n^(3/4)), where c = Integral_{0..infinity} log(1 + exp(-x) - exp(-3*x)) dx = 0.59698046904738615106237970379036510874974380079287087827737... . - Vaclav Kotesovec, Jan 05 2016

A266650 Expansion of Product_{k>=1} (1 + x^k - x^(3*k)) / (1 - x^k).

Original entry on oeis.org

1, 2, 4, 7, 13, 21, 34, 53, 82, 123, 181, 263, 379, 537, 754, 1047, 1444, 1972, 2675, 3601, 4820, 6408, 8473, 11141, 14580, 18985, 24611, 31765, 40839, 52294, 66719, 84819, 107474, 135731, 170892, 214518, 268524, 335190, 417308, 518212, 641948, 793324, 978157
Offset: 0

Views

Author

Vaclav Kotesovec, Jan 02 2016

Keywords

Comments

Convolution of A266686 and A000041.

Crossrefs

Programs

  • Mathematica
    nmax = 50; CoefficientList[Series[Product[(1+x^k-x^(3*k))/(1-x^k), {k, 1, nmax}], {x, 0, nmax}], x]

Formula

a(n) ~ sqrt(6*c + Pi^2) * exp(sqrt((4*c + 2*Pi^2/3)*n)) / (4*sqrt(3)*Pi*n), where c = Integral_{0..infinity} log(1 + exp(-x) - exp(-3*x)) dx = 0.59698046904738615106237970379036510874974380079287087827737... . - Vaclav Kotesovec, Jan 05 2016

A266649 Expansion of Product_{k>=1} 1 - x^(3*k)/(1-x^k).

Original entry on oeis.org

1, 0, 0, -1, -1, -1, -2, -1, -2, -1, -1, 1, -1, 3, 2, 5, 4, 8, 7, 11, 8, 12, 11, 13, 10, 9, 9, 7, 3, -2, -5, -13, -16, -25, -28, -48, -44, -66, -60, -82, -82, -104, -95, -120, -103, -131, -107, -133, -98, -124, -85, -94, -42, -51, 9, 7, 83, 100, 181, 208, 298
Offset: 0

Views

Author

Vaclav Kotesovec, Jan 02 2016

Keywords

Crossrefs

Programs

  • Mathematica
    nmax = 100; CoefficientList[Series[Product[1-x^(3*k)/(1-x^k), {k, 1, nmax}], {x, 0, nmax}], x]

Formula

G.f.: Product_{k>=1} (1 - x^k - x^(3*k)) / (1 - x^k).
Showing 1-6 of 6 results.