A266770 Molien series for invariants of finite Coxeter group D_7.
1, 0, 1, 0, 2, 0, 3, 1, 5, 1, 7, 2, 11, 3, 15, 5, 21, 7, 28, 11, 38, 15, 49, 21, 65, 28, 82, 38, 105, 49, 131, 65, 164, 82, 201, 105, 248, 131, 300, 164, 364, 201, 436, 248, 522, 300, 618, 364, 733, 436, 860, 522, 1009, 618, 1175, 733, 1367, 860, 1579, 1009, 1824, 1175, 2093, 1367, 2400, 1579, 2738, 1824, 3120, 2093, 3539, 2400, 4011
Offset: 0
Keywords
References
- J. E. Humphreys, Reflection Groups and Coxeter Groups, Cambridge, 1990. See Table 3.1, page 59.
Links
- G. C. Greubel, Table of n, a(n) for n = 0..1000
- Index entries for Molien series
- Index entries for linear recurrences with constant coefficients, signature (0,1,0,1,0,0,1,0,-1,-1,-1,0,0,-2,0,0,1,1,0,1,2,1,0,1,-1, 0,-1,-2,-1,0,-1,-1,0,0,2,0,0,1,1,1,0,-1,0,0,-1,0,-1,0,1).
Crossrefs
Programs
-
Magma
R
:=PowerSeriesRing(Integers(), 80); Coefficients(R!( 1/((1-x^7)*(&*[1-x^(2*j): j in [1..6]])) )); // G. C. Greubel, Jan 31 2020 -
Maple
seq(coeff(series(1/((1-x^7)*mul(1-x^(2*j), j=1..6)), x, n+1), x, n), n = 0..80); # G. C. Greubel, Jan 31 2020
-
Mathematica
CoefficientList[Series[1/((1-x^7)*Product[1-x^(2*j), {j,6}]), {x,0,80}], x] (* G. C. Greubel, Jan 31 2020 *)
-
PARI
Vec(1/((1-x^7)*prod(j=1,6,1-x^(2*j))) +O('x^80)) \\ G. C. Greubel, Jan 31 2020
-
Sage
def A266770_list(prec): P.
= PowerSeriesRing(ZZ, prec) return P( 1/((1-x^7)*product(1-x^(2*j) for j in (1..6))) ).list() A266770_list(80) # G. C. Greubel, Jan 31 2020
Formula
G.f.: 1/((1-x^2)*(1-x^4)*(1-x^6)*(1-x^7)*(1-x^8)*(1-x^10)*(1-x^12)).
Comments