cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A266770 Molien series for invariants of finite Coxeter group D_7.

Original entry on oeis.org

1, 0, 1, 0, 2, 0, 3, 1, 5, 1, 7, 2, 11, 3, 15, 5, 21, 7, 28, 11, 38, 15, 49, 21, 65, 28, 82, 38, 105, 49, 131, 65, 164, 82, 201, 105, 248, 131, 300, 164, 364, 201, 436, 248, 522, 300, 618, 364, 733, 436, 860, 522, 1009, 618, 1175, 733, 1367, 860, 1579, 1009, 1824, 1175, 2093, 1367, 2400, 1579, 2738, 1824, 3120, 2093, 3539, 2400, 4011
Offset: 0

Views

Author

N. J. A. Sloane, Jan 10 2016

Keywords

Comments

The Molien series for the finite Coxeter group of type D_k (k >= 3) has G.f. = 1/Prod_i (1-x^(1+m_i)) where the m_i are [1,3,5,...,2k-3,k-1]. If k is even only even powers of x appear, and we bisect the sequence.

References

  • J. E. Humphreys, Reflection Groups and Coxeter Groups, Cambridge, 1990. See Table 3.1, page 59.

Crossrefs

Molien series for finite Coxeter groups D_3 through D_12 are A266755, A266769, A266768, A003402, and A266770-A266775.

Programs

  • Magma
    R:=PowerSeriesRing(Integers(), 80); Coefficients(R!( 1/((1-x^7)*(&*[1-x^(2*j): j in [1..6]])) )); // G. C. Greubel, Jan 31 2020
    
  • Maple
    seq(coeff(series(1/((1-x^7)*mul(1-x^(2*j), j=1..6)), x, n+1), x, n), n = 0..80); # G. C. Greubel, Jan 31 2020
  • Mathematica
    CoefficientList[Series[1/((1-x^7)*Product[1-x^(2*j), {j,6}]), {x,0,80}], x] (* G. C. Greubel, Jan 31 2020 *)
  • PARI
    Vec(1/((1-x^7)*prod(j=1,6,1-x^(2*j))) +O('x^80)) \\ G. C. Greubel, Jan 31 2020
    
  • Sage
    def A266770_list(prec):
        P. = PowerSeriesRing(ZZ, prec)
        return P( 1/((1-x^7)*product(1-x^(2*j) for j in (1..6))) ).list()
    A266770_list(80) # G. C. Greubel, Jan 31 2020

Formula

G.f.: 1/((1-x^2)*(1-x^4)*(1-x^6)*(1-x^7)*(1-x^8)*(1-x^10)*(1-x^12)).