cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-9 of 9 results.

A266755 Expansion of 1/((1-x^2)*(1-x^3)*(1-x^4)).

Original entry on oeis.org

1, 0, 1, 1, 2, 1, 3, 2, 4, 3, 5, 4, 7, 5, 8, 7, 10, 8, 12, 10, 14, 12, 16, 14, 19, 16, 21, 19, 24, 21, 27, 24, 30, 27, 33, 30, 37, 33, 40, 37, 44, 40, 48, 44, 52, 48, 56, 52, 61, 56, 65, 61, 70, 65, 75, 70, 80, 75, 85, 80, 91, 85, 96, 91, 102, 96, 108, 102, 114, 108, 120, 114, 127, 120, 133, 127, 140, 133, 147, 140, 154, 147, 161, 154, 169
Offset: 0

Views

Author

N. J. A. Sloane, Jan 10 2016

Keywords

Comments

This is the same as A005044 but without the three leading zeros. There are so many situations where one wants this sequence rather than A005044 that it seems appropriate for it to have its own entry.
But see A005044 (still the main entry) for numerous applications and references.
Also, Molien series for invariants of finite Coxeter group D_3.
The Molien series for the finite Coxeter group of type D_k (k >= 3) has g.f. = 1/Product_i (1-x^(1+m_i)) where the m_i are [1,3,5,...,2k-3,k-1]. If k is even only even powers of x appear, and we bisect the sequence.
Also, Molien series for invariants of finite Coxeter group A_3. The Molien series for the finite Coxeter group of type A_k (k >= 1) has g.f. = 1/Product_{i=2..k+1} (1-x^i). Note that this is the root system A_k not the alternating group Alt_k.
a(n) is the number of partitions of n into parts 2, 3, and 4. - Joerg Arndt, Apr 16 2017
From Gus Wiseman, May 23 2021: (Start)
Also the number of integer partitions of n into at most n/2 parts, none greater than 3. The case of any maximum is A110618. The case of any length is A001399. The Heinz numbers of these partitions are given by A344293.
For example, the a(2) = 1 through a(13) = 5 partitions are:
2 3 22 32 33 322 332 333 3322 3332 3333 33322
31 222 331 2222 3222 3331 32222 33222 33331
321 3221 3321 22222 33221 33321 322222
3311 32221 33311 222222 332221
33211 322221 333211
332211
333111
(End)

Examples

			G.f. = 1 + x^2 + x^3 + 2*x^4 + x^5 + 3*x^6 + 2*x^7 + 4*x^8 + ... - _Michael Somos_, Jan 29 2022
		

References

  • J. E. Humphreys, Reflection Groups and Coxeter Groups, Cambridge, 1990. See Table 3.1, page 59.

Crossrefs

Molien series for finite Coxeter groups A_1 through A_12 are A059841, A103221, A266755, A008667, A037145, A001996, and A266776-A266781.
Molien series for finite Coxeter groups D_3 through D_12 are A266755, A266769, A266768, A003402, and A266770-A266775.
A variant of A005044.
Cf. A001400 (partial sums).
Cf. A308065.
Number of partitions of n whose Heinz number is in A344293.
A001399 counts partitions with all parts <= 3, ranked by A051037.
A025065 counts partitions of n with >= n/2 parts, ranked by A344296.
A035363 counts partitions of n with n/2 parts, ranked by A340387.
A110618 counts partitions of n into at most n/2 parts, ranked by A344291.

Programs

  • Magma
    I:=[1,0,1,1,2,1,3,2,4]; [n le 9 select I[n] else Self(n-2)+ Self(n-3)+Self(n-4)-Self(n-5)-Self(n-6)-Self(n-7)+Self(n-9): n in [1..100]]; // Vincenzo Librandi, Jan 11 2016
    
  • Mathematica
    CoefficientList[Series[1/((1-x^2)(1-x^3)(1-x^4)), {x, 0, 100}], x] (* JungHwan Min, Jan 10 2016 *)
    LinearRecurrence[{0,1,1,1,-1,-1,-1,0,1}, {1,0,1,1,2,1,3,2,4}, 100] (* Vincenzo Librandi, Jan 11 2016 *)
    Table[Length[Select[IntegerPartitions[n],Length[#]<=n/2&&Max@@#<=3&]],{n,0,30}] (* Gus Wiseman, May 23 2021 *)
    a[ n_] := Round[(n + 3*(2 - Mod[n,2]))^2/48]; (* Michael Somos, Jan 29 2022 *)
  • PARI
    Vec(1/((1-x^2)*(1-x^3)*(1-x^4)) + O(x^100)) \\ Michel Marcus, Jan 11 2016
    
  • PARI
    {a(n) = round((n + 3*(2-n%2))^2/48)}; /* Michael Somos, Jan 29 2022 */
    
  • Sage
    (1/((1-x^2)*(1-x^3)*(1-x^4))).series(x, 100).coefficients(x, sparse=False) # G. C. Greubel, Jun 13 2019

Formula

a(n) = a(n-2) + a(n-3) + a(n-4) - a(n-5) - a(n-6) - a(n-7) + a(n-9) for n>8. - Vincenzo Librandi, Jan 11 2016
a(n) = a(-9-n) for all n in Z. a(n) = a(n+3) for all n in 2Z. - Michael Somos, Jan 29 2022
E.g.f.: exp(-x)*(81 - 18*x + exp(2*x)*(107 + 60*x + 6*x^2) + 64*exp(x/2)*cos(sqrt(3)*x/2) + 36*exp(x)*(cos(x) - sin(x)))/288. - Stefano Spezia, Mar 05 2023
For n >= 3, if n is even, a(n) = a(n-3) + floor(n/4) + 1, otherwise a(n) = a(n-3). - Robert FERREOL, Feb 05 2024
a(n) = floor((n^2+9*n+(3*n+9)*(-1)^n+39)/48). - Hoang Xuan Thanh, Jun 03 2025

A003402 G.f.: 1/((1-x)*(1-x^2)*(1-x^3)^2*(1-x^4)*(1-x^5)).

Original entry on oeis.org

1, 1, 2, 4, 6, 9, 14, 19, 27, 37, 49, 64, 84, 106, 134, 168, 207, 253, 309, 371, 445, 530, 626, 736, 863, 1003, 1163, 1343, 1543, 1766, 2017, 2291, 2597, 2935, 3305, 3712, 4161, 4647, 5181, 5763, 6394, 7079, 7825, 8627, 9497, 10436, 11445, 12531, 13702, 14952
Offset: 0

Views

Author

Keywords

Comments

Enumerates certain triangular arrays of integers.
Also, Molien series for invariants of finite Coxeter group D_6 (bisected). The Molien series for the finite Coxeter group of type D_k (k >= 3) has G.f. = 1/Prod_i (1-x^(1+m_i)) where the m_i are [1,3,5,...,2k-3,k-1]. If k is even only even powers of x appear, and we bisect the sequence. - N. J. A. Sloane, Jan 11 2016

References

  • J. E. Humphreys, Reflection Groups and Coxeter Groups, Cambridge, 1990. See Table 3.1, page 59.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Molien series for finite Coxeter groups D_3 through D_12 are A266755, A266769, A266768, A003402, and A266770-A266775.

Programs

  • Maple
    A079978:= n -> `if`(n mod 3 = 0, 1, 0):
    F:= n -> 1+floor((7913/17280)*n+(13/96)*n^2+(227/12960)*n^3+(1/960)*n^4+(1/43200)*n^5 + n/27*A079978(n) + n/128*(-1)^n):
    seq(F(n), n= 0..100); # Robert Israel, Apr 22 2015
  • Mathematica
    CoefficientList[Series[1/((1 - x) (1 - x^2) (1 - x^3)^2*(1 - x^4) (1 - x^5)), {x, 0, 49}], x] (* Michael De Vlieger, Feb 21 2018 *)
  • PARI
    Vec(1/((1-x)*(1-x^2)*(1-x^3)^2*(1-x^4)*(1-x^5)) + O(x^50)) \\ Jinyuan Wang, Mar 10 2020

Formula

a(n) = a(n-1) + b(n), b(n) = b(n-2) + c(n) - e(n), c(n) = c(n-3) + 2e(n), e(n) = e(n - 4) + f(n), f(n) = f(n - 5) + g(n), g(n) = g(n - 6), g(0) = 1, all functions are 0 for negative indexes. [From Miller paper.] - Sean A. Irvine, Apr 22 2015
a(n) = 1 + floor((7913/17280)*n + (13/96)*n^2 + (227/12960)*n^3 + (1/960)*n^4 + (1/43200)*n^5 + n/27*A079978(n) + n/128*(-1)^n). - Robert Israel, Apr 22 2015

Extensions

Entry revised by N. J. A. Sloane, Apr 22 2015

A266769 Expansion of 1/((1-x)*(1-x^2)^2*(1-x^3)).

Original entry on oeis.org

1, 1, 3, 4, 7, 9, 14, 17, 24, 29, 38, 45, 57, 66, 81, 93, 111, 126, 148, 166, 192, 214, 244, 270, 305, 335, 375, 410, 455, 495, 546, 591, 648, 699, 762, 819, 889, 952, 1029, 1099, 1183, 1260, 1352, 1436, 1536, 1628, 1736, 1836, 1953, 2061
Offset: 0

Views

Author

N. J. A. Sloane, Jan 10 2016

Keywords

Comments

This is the same as A008763 but without the four leading zeros. There are so many situations where one wants this sequence rather than A008763 that it seems appropriate for it to have its own entry.
But see A008763 (still the main entry) for numerous applications and references.
Also, Molien series for invariants of finite Coxeter group D_4 (bisected).
The Molien series for the finite Coxeter group of type D_k (k >= 3) has G.f. = 1/Prod_i (1-x^(1+m_i)) where the m_i are [1,3,5,...,2k-3,k-1]. If k is even only even powers of x appear, and we bisect the sequence.
Euler transform of length 3 sequence [1, 2, 1]. - Michael Somos, Jun 26 2017
a(n) is the number of partitions of n into parts 1, 2, and 3, where there are two sorts of parts 2. - Joerg Arndt, Jun 27 2017

References

  • J. E. Humphreys, Reflection Groups and Coxeter Groups, Cambridge, 1990. See Table 3.1, page 59.

Crossrefs

Molien series for finite Coxeter groups D_3 through D_12 are A266755, A266769, A266768, A003402, and A266770-A266775.
A variant of A008763.

Programs

  • Magma
    I:=[1,1,3,4,7,9,14,17]; [n le 8 select I[n] else Self(n-1)+2*Self(n-2)-Self(n-3)-2*Self(n-4)-Self(n-5)+2*Self(n-6)+Self(n-7)-Self(n-8): n in [1..60]]; // Vincenzo Librandi, Jan 11 2016
    
  • Mathematica
    CoefficientList[Series[1/((1-x)*(1-x^2)^2*(1-x^3)), {x, 0, 50}], x] (* JungHwan Min, Jan 10 2016 *)
    LinearRecurrence[{1, 2, -1, -2, -1, 2, 1, -1}, {1, 1, 3, 4, 7, 9, 14, 17}, 100] (* Vincenzo Librandi, Jan 11 2016 *)
  • PARI
    Vec(1/((1-x)*(1-x^2)^2*(1-x^3)) + O(x^100)) \\ Michel Marcus, Jan 11 2016
    
  • PARI
    {a(n) = (9*(n+4)*(-1)^n + 2*n^3 + 24*n^2 + 87*n + 157) \ 144}; /* Michael Somos, Jun 26 2017 */

Formula

a(n) = a(n-1) + 2*a(n-2) - a(n-3) - 2*a(n-4) - a(n-5) + 2*a(n-6) + a(n-7) - a(n-8) for n>7. - Vincenzo Librandi, Jan 11 2016
a(n) = -a(-8-n) for all n in Z. - Michael Somos, Jun 26 2017

A266768 Molien series for invariants of finite Coxeter group D_5.

Original entry on oeis.org

1, 0, 1, 0, 2, 1, 3, 1, 5, 2, 7, 3, 10, 5, 13, 7, 18, 10, 23, 13, 30, 18, 37, 23, 47, 30, 57, 37, 70, 47, 84, 57, 101, 70, 119, 84, 141, 101, 164, 119, 192, 141, 221, 164, 255, 192, 291, 221, 333, 255, 377, 291, 427, 333, 480, 377, 540, 427, 603, 480, 674, 540, 748, 603, 831, 674, 918, 748, 1014, 831, 1115, 918, 1226, 1014, 1342, 1115
Offset: 0

Views

Author

N. J. A. Sloane, Jan 10 2016

Keywords

Comments

The Molien series for the finite Coxeter group of type D_k (k >= 3) has G.f. = 1/Prod_i (1-x^(1+m_i)) where the m_i are [1,3,5,...,2k-3,k-1]. If k is even only even powers of x appear, and we bisect the sequence.

References

  • J. E. Humphreys, Reflection Groups and Coxeter Groups, Cambridge, 1990. See Table 3.1, page 59.

Crossrefs

Molien series for finite Coxeter groups D_3 through D_12 are A266755, A266769, A266768, A003402, and A266770-A266775.

Programs

  • Magma
    R:=PowerSeriesRing(Integers(), 80); Coefficients(R!( 1/((1-x^2)*(1-x^4)*(1-x^6)*(1-x^5)*(1-x^8)) )); // G. C. Greubel, Jan 31 2020
    
  • Maple
    seq(coeff(series(1/((1-x^2)*(1-x^4)*(1-x^6)*(1-x^5)*(1-x^8)), x, n+1), x, n), n = 0..80); # G. C. Greubel, Jan 31 2020
  • Mathematica
    CoefficientList[Series[1/((1-x^2)*(1-x^4)*(1-x^6)*(1-x^5)*(1-x^8)), {x,0,80}], x] (* G. C. Greubel, Jan 31 2020 *)
  • PARI
    my(x='x+O('x^80)); Vec(1/((1-x^2)*(1-x^4)*(1-x^6)*(1-x^5)*(1-x^8))) \\ G. C. Greubel, Jan 31 2020
    
  • Sage
    def A266768_list(prec):
        P. = PowerSeriesRing(ZZ, prec)
        return P( 1/((1-x^2)*(1-x^4)*(1-x^6)*(1-x^5)*(1-x^8)) ).list()
    A266768_list(80) # G. C. Greubel, Jan 31 2020

Formula

G.f.: 1/((1-x^2)*(1-x^4)*(1-x^6)*(1-x^5)*(1-x^8)).
a(n) = a(n-2)+a(n-4)+a(n-5)-a(n-7)-a(n-9)-2*a(n-10)+2*a(n-15)+a(n-16)+a(n-18)-a(n-20)-a(n-21)-a(n-23)+a(n-25). - Wesley Ivan Hurt, May 03 2021

A266775 Molien series for invariants of finite Coxeter group D_12 (bisected).

Original entry on oeis.org

1, 1, 2, 3, 5, 7, 12, 16, 24, 33, 47, 63, 88, 115, 155, 202, 266, 341, 443, 560, 715, 897, 1129, 1401, 1746, 2146, 2645, 3228, 3941, 4771, 5781, 6948, 8353, 9979, 11913, 14144, 16785, 19814, 23374, 27454, 32211, 37645, 43954, 51130, 59417, 68827, 79631, 91863, 105857, 121645
Offset: 0

Views

Author

N. J. A. Sloane, Jan 11 2016

Keywords

Comments

The Molien series for the finite Coxeter group of type D_k (k >= 3) has g.f. = 1/Product_i (1-x^(1+m_i)) where the m_i are [1,3,5,...,2k-3,k-1]. If k is even only even powers of x appear, and we bisect the sequence.

References

  • J. E. Humphreys, Reflection Groups and Coxeter Groups, Cambridge, 1990. See Table 3.1, page 59.

Crossrefs

Molien series for finite Coxeter groups D_3 through D_12 are A266755, A266769, A266768, A003402, and A266770-A266775.

Programs

  • Magma
    R:=PowerSeriesRing(Integers(), 50); Coefficients(R!( 1/((1-x^6)*(&*[1-x^j: j in [1..11]])) )); // G. C. Greubel, Jan 31 2020
    
  • Maple
    S:=series(1/((1-x^6)*mul(1-x^j, j=1..11)), x, 55): seq(coeff(S, x, j), j=0..50); # G. C. Greubel, Jan 31 2020
  • Mathematica
    CoefficientList[Series[1/((1-t^6)*Product[1-t^j, {j,11}]), {t,0,50}], t] (* G. C. Greubel, Jan 31 2020 *)
  • PARI
    Vec( 1/( (1-x^6)*prod(j=1,11, 1-x^j) ) + O('x^50)) \\ G. C. Greubel, Jan 31 2020
    
  • Sage
    [( 1/((1-x^6)*product(1-x^j for j in (1..11))) ).series(x, n+1).list()[n] for n in (0..50)] # G. C. Greubel, Jan 31 2020

Formula

G.f.: 1/((1-t^2)*(1-t^4)*(1-t^6)*(1-t^8)*(1-t^10)*(1-t^12)^2*(1-t^14)*(1-t^16)*(1-t^18)*(1-t^20)*(1-t^22)), bisected.
G.f.: 1/( (1-t^6)*Product_{j=1..11} (1-t^j) ). - G. C. Greubel, Feb 01 2020

A266772 Molien series for invariants of finite Coxeter group D_9.

Original entry on oeis.org

1, 0, 1, 0, 2, 0, 3, 0, 5, 1, 7, 1, 11, 2, 15, 3, 22, 5, 30, 7, 41, 11, 54, 15, 73, 22, 94, 30, 123, 41, 157, 54, 201, 73, 252, 94, 318, 123, 393, 157, 488, 201, 598, 252, 732, 318, 887, 393, 1076, 488, 1291, 598, 1549, 732, 1845, 887, 2194, 1076, 2592, 1291, 3060, 1549, 3589, 1845, 4206, 2194, 4904, 2592, 5708, 3060, 6615, 3589
Offset: 0

Views

Author

N. J. A. Sloane, Jan 11 2016

Keywords

Comments

The Molien series for the finite Coxeter group of type D_k (k >= 3) has G.f. = 1/Prod_i (1-x^(1+m_i)) where the m_i are [1,3,5,...,2k-3,k-1]. If k is even only even powers of x appear, and we bisect the sequence.

References

  • J. E. Humphreys, Reflection Groups and Coxeter Groups, Cambridge, 1990. See Table 3.1, page 59.

Crossrefs

Molien series for finite Coxeter groups D_3 through D_12 are A266755, A266769, A266768, A003402, and A266770-A266775.

Programs

  • Magma
    R:=PowerSeriesRing(Integers(), 80); Coefficients(R!( 1/((1-x^9)*(&*[1-x^(2*j): j in [1..8]])) )); // G. C. Greubel, Feb 03 2020
    
  • Maple
    seq(coeff(series(1/((1-x^9)*mul(1-x^(2*j), j=1..8)), x, n+1), x, n), n = 0..80); # G. C. Greubel, Feb 03 2020
  • Mathematica
    CoefficientList[Series[1/((1-x^9)*Product[1-x^(2*j), {j,8}]), {x,0,80}], x] (* G. C. Greubel, Feb 03 2020 *)
  • PARI
    Vec(1/((1-x^9)*prod(j=1,8,1-x^(2*j))) +O('x^80)) \\ G. C. Greubel, Feb 03 2020
    
  • Sage
    def A266772_list(prec):
        P. = PowerSeriesRing(ZZ, prec)
        return P( 1/((1-x^9)*product(1-x^(2*j) for j in (1..8))) ).list()
    A266772_list(80) # G. C. Greubel, Feb 03 2020

Formula

G.f.: 1/((1-t^2)*(1-t^4)*(1-t^6)*(1-t^8)*(1-t^9)*(1-t^10)*(1-t^12)*(1-t^14)*(1-t^16)).

A266773 Molien series for invariants of finite Coxeter group D_10 (bisected).

Original entry on oeis.org

1, 1, 2, 3, 5, 8, 12, 17, 25, 35, 49, 66, 90, 119, 158, 206, 267, 342, 437, 551, 694, 865, 1074, 1324, 1627, 1985, 2414, 2919, 3518, 4219, 5045, 6003, 7125, 8422, 9927, 11660, 13660, 15949, 18578, 21575, 24998, 28884, 33303, 38298, 43955, 50329, 57513, 65581, 74645, 84786
Offset: 0

Views

Author

N. J. A. Sloane, Jan 11 2016

Keywords

Comments

The Molien series for the finite Coxeter group of type D_k (k >= 3) has G.f. = 1/Prod_i (1-x^(1+m_i)) where the m_i are [1,3,5,...,2k-3,k-1]. If k is even only even powers of x appear, and we bisect the sequence.

References

  • J. E. Humphreys, Reflection Groups and Coxeter Groups, Cambridge, 1990. See Table 3.1, page 59.

Crossrefs

Molien series for finite Coxeter groups D_3 through D_12 are A266755, A266769, A266768, A003402, and A266770-A266775.

Programs

  • Magma
    R:=PowerSeriesRing(Integers(), 50); Coefficients(R!( 1/((1-x^5)*(&*[1-x^j: j in [1..9]])) )); // G. C. Greubel, Feb 03 2020
    
  • Maple
    seq(coeff(series(1/((1-x^5)*mul(1-x^j, j=1..9)), x, n+1), x, n), n = 0..50); # G. C. Greubel, Feb 03 2020
  • Mathematica
    CoefficientList[Series[1/((1-x^5)*Product[1-x^j, {j,9}]), {x,0,50}], x] (* G. C. Greubel, Feb 03 2020 *)
  • PARI
    Vec(1/((1-x^5)*prod(j=1,9,1-x^j)) +O('x^50)) \\ G. C. Greubel, Feb 03 2020
    
  • Sage
    def A266773_list(prec):
        P. = PowerSeriesRing(ZZ, prec)
        return P( 1/((1-x^5)*product(1-x^j for j in (1..9))) ).list()
    A266773_list(50) # G. C. Greubel, Feb 03 2020

Formula

G.f.: 1/((1-t^2)*(1-t^4)*(1-t^6)*(1-t^8)*(1-t^10)^2*(1-t^12)*(1-t^14)*(1-t^16)*(1-t^18)), bisected.
G.f.: 1/( (1-x^5)*(Product_{j=1..9} 1-x^j) ). - G. C. Greubel, Feb 03 2020

A266774 Molien series for invariants of finite Coxeter group D_11.

Original entry on oeis.org

1, 0, 1, 0, 2, 0, 3, 0, 5, 0, 7, 1, 11, 1, 15, 2, 22, 3, 30, 5, 42, 7, 56, 11, 76, 15, 99, 22, 131, 30, 169, 42, 219, 56, 278, 76, 355, 99, 445, 131, 560, 169, 695, 219, 863, 278, 1060, 355, 1303, 445, 1586, 560, 1930, 695, 2331, 863, 2812, 1060, 3370, 1303, 4035, 1586, 4802, 1930, 5708, 2331, 6751, 2812, 7972, 3370, 9373, 4035, 11004
Offset: 0

Views

Author

N. J. A. Sloane, Jan 11 2016

Keywords

Comments

The Molien series for the finite Coxeter group of type D_k (k >= 3) has G.f. = 1/Prod_i (1-x^(1+m_i)) where the m_i are [1,3,5,...,2k-3,k-1]. If k is even only even powers of x appear, and we bisect the sequence.

References

  • J. E. Humphreys, Reflection Groups and Coxeter Groups, Cambridge, 1990. See Table 3.1, page 59.

Crossrefs

Molien series for finite Coxeter groups D_3 through D_12 are A266755, A266769, A266768, A003402, and A266770-A266775.

Programs

  • Magma
    R:=PowerSeriesRing(Integers(), 80); Coefficients(R!( 1/((1-x^11)*(&*[1-x^(2*j): j in [1..10]])) )); // G. C. Greubel, Feb 03 2020
    
  • Maple
    seq(coeff(series(1/((1-x^11)*mul(1-x^(2*j), j=1..10)), x, n+1), x, n), n = 0..80); # G. C. Greubel, Feb 03 2020
  • Mathematica
    CoefficientList[Series[1/((1-x^11)*Product[1-x^(2*j), {j,10}]), {x,0,80}], x] (* G. C. Greubel, Feb 03 2020 *)
  • PARI
    Vec(1/((1-x^11)*prod(j=1,10,1-x^(2*j))) +O('x^80)) \\ G. C. Greubel, Feb 03 2020
    
  • Sage
    def A266774_list(prec):
        P. = PowerSeriesRing(ZZ, prec)
        return P( 1/((1-x^11)*product(1-x^(2*j) for j in (1..10))) ).list()
    A266774_list(80) # G. C. Greubel, Feb 03 2020

Formula

G.f.: 1/((1-t^2)*(1-t^4)*(1-t^6)*(1-t^8)*(1-t^10)*(1-t^11)*(1-t^12)*(1-t^14)*(1-t^16)*(1-t^18)*(1-t^20)).

A266771 Molien series for invariants of finite Coxeter group D_8 (bisected).

Original entry on oeis.org

1, 1, 2, 3, 6, 8, 13, 18, 27, 36, 51, 67, 92, 118, 156, 198, 256, 319, 404, 498, 620, 755, 926, 1116, 1353, 1615, 1935, 2291, 2720, 3194, 3759, 4384, 5120, 5932, 6879, 7923, 9131, 10458, 11981, 13654, 15561, 17648, 20014, 22600, 25514, 28692, 32255, 36134, 40464, 45167
Offset: 0

Views

Author

N. J. A. Sloane, Jan 10 2016

Keywords

Comments

The Molien series for the finite Coxeter group of type D_k (k >= 3) has G.f. = 1/Prod_i (1-x^(1+m_i)) where the m_i are [1,3,5,...,2k-3,k-1]. If k is even only even powers of x appear, and we bisect the sequence.

References

  • J. E. Humphreys, Reflection Groups and Coxeter Groups, Cambridge, 1990. See Table 3.1, page 59.

Crossrefs

Molien series for finite Coxeter groups D_3 through D_12 are A266755, A266769, A266768, A003402, and A266770-A266775.

Programs

  • Mathematica
    Take[CoefficientList[Series[1/((1-x^8)Times@@(1-x^Range[2,14,2])),{x,0,100}],x],{1,-1,2}] (* Harvey P. Dale, Jan 02 2018 *)

Formula

G.f.: 1/((1-t^8)^2*(1-t^2)*(1-t^4)*(1-t^6)*(1-t^10)*(1-t^12)*(1-t^14)), bisected.
Showing 1-9 of 9 results.