cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 26 results. Next

A005044 Alcuin's sequence: expansion of x^3/((1-x^2)*(1-x^3)*(1-x^4)).

Original entry on oeis.org

0, 0, 0, 1, 0, 1, 1, 2, 1, 3, 2, 4, 3, 5, 4, 7, 5, 8, 7, 10, 8, 12, 10, 14, 12, 16, 14, 19, 16, 21, 19, 24, 21, 27, 24, 30, 27, 33, 30, 37, 33, 40, 37, 44, 40, 48, 44, 52, 48, 56, 52, 61, 56, 65, 61, 70, 65, 75, 70, 80, 75, 85, 80, 91, 85, 96, 91, 102, 96, 108, 102, 114, 108, 120
Offset: 0

Views

Author

Keywords

Comments

a(n) is the number of triangles with integer sides and perimeter n.
Also a(n) is the number of triangles with distinct integer sides and perimeter n+6, i.e., number of triples (a, b, c) such that 1 < a < b < c < a+b, a+b+c = n+6. - Roger Cuculière
With a different offset (i.e., without the three leading zeros, as in A266755), the number of ways in which n empty casks, n casks half-full of wine and n full casks can be distributed to 3 persons in such a way that each one gets the same number of casks and the same amount of wine [Alcuin]. E.g., for n=2 one can give 2 people one full and one empty and the 3rd gets two half-full. (Comment corrected by Franklin T. Adams-Watters, Oct 23 2006)
For m >= 2, the sequence {a(n) mod m} is periodic with period 12*m. - Martin J. Erickson (erickson(AT)truman.edu), Jun 06 2008
Number of partitions of n into parts 2, 3, and 4, with at least one part 3. - Joerg Arndt, Feb 03 2013
For several values of p and q the sequence (A005044(n+p) - A005044(n-q)) leads to known sequences, see the crossrefs. - Johannes W. Meijer, Oct 12 2013
For n>=3, number of partitions of n-3 into parts 2, 3, and 4. - David Neil McGrath, Aug 30 2014
Also, a(n) is the number of partitions mu of n of length 3 such that mu_1-mu_2 is even and mu_2-mu_3 is even (see below example). - John M. Campbell, Jan 29 2016
For n > 1, number of triangles with odd side lengths and perimeter 2*n-3. - Wesley Ivan Hurt, May 13 2019
Number of partitions of n+1 into 4 parts whose largest two parts are equal. - Wesley Ivan Hurt, Jan 06 2021
For n>=3, number of weak partitions of n-3 (that is, allowing parts of size 0) into three parts with no part exceeding (n-3)/2. Also, number of weak partitions of n-3 into three parts, all of the same parity as n-3. - Kevin Long, Feb 20 2021
Also, a(n) is the number of incongruent acute triangles formed from the vertices of a regular n-gon. - Frank M Jackson, Nov 04 2022

Examples

			There are 4 triangles of perimeter 11, with sides 1,5,5; 2,4,5; 3,3,5; 3,4,4. So a(11) = 4.
G.f. = x^3 + x^5 + x^6 + 2*x^7 + x^8 + 3*x^9 + 2*x^10 + 4*x^11 + 3*x^12 + ...
From _John M. Campbell_, Jan 29 2016: (Start)
Letting n = 15, there are a(n)=7 partitions mu |- 15 of length 3 such that mu_1-mu_2 is even and mu_2-mu_3 is even:
(13,1,1) |- 15
(11,3,1) |- 15
(9,5,1) |- 15
(9,3,3) |- 15
(7,7,1) |- 15
(7,5,3) |- 15
(5,5,5) |- 15
(End)
		

References

  • L. Comtet, Advanced Combinatorics, Reidel, 1974, p. 74, Problem 7.
  • I. Niven and H. S. Zuckerman, An Introduction to the Theory of Numbers. Wiley, NY, Chap.10, Section 10.2, Problems 5 and 6, pp. 451-2.
  • D. Olivastro: Ancient Puzzles. Classic Brainteasers and Other Timeless Mathematical Games of the Last 10 Centuries. New York: Bantam Books, 1993. See p. 158.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
  • A. M. Yaglom and I. M. Yaglom: Challenging Mathematical Problems with Elementary Solutions. Vol. I. Combinatorial Analysis and Probability Theory. New York: Dover Publications, Inc., 1987, p. 8, #30 (First published: San Francisco: Holden-Day, Inc., 1964)

Crossrefs

See A266755 for a version without the three leading zeros.
Both bisections give (essentially) A001399.
(See the comments.) Cf. A008615 (p=1, q=3, offset=0), A008624 (3, 3, 0), A008679 (3, -1, 0), A026922 (1, 5, 1), A028242 (5, 7, 0), A030451 (6, 6, 0), A051274 (3, 5, 0), A052938 (8, 4, 0), A059169 (0, 6, 1), A106466 (5, 4, 0), A130722 (2, 7, 0)
Cf. this sequence (k=3), A288165 (k=4), A288166 (k=5).
Number of k-gons that can be formed with perimeter n: this sequence (k=3), A062890 (k=4), A069906 (k=5), A069907 (k=6), A288253 (k=7), A288254 (k=8), A288255 (k=9), A288256 (k=10).

Programs

  • Haskell
    a005044 = p [2,3,4] . (subtract 3) where
    p _ 0 = 1
    p [] _ = 0
    p ks'@(k:ks) m = if m < k then 0 else p ks' (m - k) + p ks m
    -- Reinhard Zumkeller, Feb 28 2013
  • Maple
    A005044 := n-> floor((1/48)*(n^2+3*n+21+(-1)^(n-1)*3*n)): seq(A005044(n), n=0..73);
    A005044 := -1/(z**2+1)/(z**2+z+1)/(z+1)**2/(z-1)**3; # Simon Plouffe in his 1992 dissertation
  • Mathematica
    a[n_] := Round[If[EvenQ[n], n^2, (n + 3)^2]/48] (* Peter Bertok, Jan 09 2002 *)
    CoefficientList[Series[x^3/((1 - x^2)*(1 - x^3)*(1 - x^4)), {x, 0, 105}], x] (* Robert G. Wilson v, Jun 02 2004 *)
    me[n_] := Module[{i, j, sum = 0}, For[i = Ceiling[(n - 3)/3], i <= Floor[(n - 3)/2], i = i + 1, For[j = Ceiling[(n - i - 3)/2], j <= i, j = j + 1, sum = sum + 1] ]; Return[sum]; ] mine = Table[me[n], {n, 1, 11}]; (* Srikanth (sriperso(AT)gmail.com), Aug 02 2008 *)
    LinearRecurrence[{0,1,1,1,-1,-1,-1,0,1},{0,0,0,1,0,1,1,2,1},80] (* Harvey P. Dale, Sep 22 2014 *)
    Table[Length@Select[IntegerPartitions[n, {3}], Max[#]*180 < 90 n &], {n, 1, 100}] (* Frank M Jackson, Nov 04 2022 *)
  • PARI
    a(n) = round(n^2 / 12) - (n\2)^2 \ 4
    
  • PARI
    a(n) = (n^2 + 6*n * (n%2) + 24) \ 48
    
  • PARI
    a(n)=if(n%2,n+3,n)^2\/48 \\ Charles R Greathouse IV, May 02 2016
    
  • PARI
    concat(vector(3), Vec((x^3)/((1-x^2)*(1-x^3)*(1-x^4)) + O(x^70))) \\ Felix Fröhlich, Jun 07 2017
    

Formula

a(n) = a(n-6) + A059169(n) = A070093(n) + A070101(n) + A024155(n).
For odd indices we have a(2*n-3) = a(2*n). For even indices, a(2*n) = nearest integer to n^2/12 = A001399(n).
For all n, a(n) = round(n^2/12) - floor(n/4)*floor((n+2)/4) = a(-3-n) = A069905(n) - A002265(n)*A002265(n+2).
For n = 0..11 (mod 12), a(n) is respectively n^2/48, (n^2 + 6*n - 7)/48, (n^2 - 4)/48, (n^2 + 6*n + 21)/48, (n^2 - 16)/48, (n^2 + 6*n - 7)/48, (n^2 + 12)/48, (n^2 + 6*n + 5)/48, (n^2 - 16)/48, (n^2 + 6*n + 9)/48, (n^2 - 4)/48, (n^2 + 6*n + 5)/48.
Euler transform of length 4 sequence [ 0, 1, 1, 1]. - Michael Somos, Sep 04 2006
a(-3 - n) = a(n). - Michael Somos, Sep 04 2006
a(n) = sum(ceiling((n-3)/3) <= i <= floor((n-3)/2), sum(ceiling((n-i-3)/2) <= j <= i, 1 ) ) for n >= 1. - Srikanth K S, Aug 02 2008
a(n) = a(n-2) + a(n-3) + a(n-4) - a(n-5) - a(n-6) - a(n-7) + a(n-9) for n >= 9. - David Neil McGrath, Aug 30 2014
a(n+3) = a(n) if n is odd; a(n+3) = a(n) + floor(n/4) + 1 if n is even. Sketch of proof: There is an obvious injective map from perimeter-n triangles to perimeter-(n+3) triangles defined by f(a,b,c) = (a+1,b+1,c+1). It is easy to show f is surjective for odd n, while for n=2k the image of f is only missing the triangles (a,k+2-a,k+1) for 1 <= a <= floor(k/2)+1. - James East, May 01 2016
a(n) = round(n^2/48) if n is even; a(n) = round((n+3)^2/48) if n is odd. - James East, May 01 2016
a(n) = (6*n^2 + 18*n - 9*(-1)^n*(2*n + 3) - 36*sin(Pi*n/2) - 36*cos(Pi*n/2) + 64*cos(2*Pi*n/3) - 1)/288. - Ilya Gutkovskiy, May 01 2016
a(n) = A325691(n-3) + A000035(n) for n>=3. The bijection between partition(n,[2,3,4]) and not-over-half partition(n,3,n/2) + partition(n,2,n/2) can be built by a Ferrers(part)[0+3,1,2] map. And the last partition(n,2,n/2) is unique [n/2,n/2] if n is even, it is given by A000035. - Yuchun Ji, Sep 24 2020
a(4n+3) = a(4n) + n+1, a(4n+4) = a(4n+1) = A000212(n+1), a(4n+5) = a(4n+2) + n+1, a(4n+6) = a(4n+3) = A007980(n). - Yuchun Ji, Oct 10 2020
a(n)-a(n-4) = A008615(n-1). - R. J. Mathar, Jun 23 2021
a(n)-a(n-2) = A008679(n-3). - R. J. Mathar, Jun 23 2021

Extensions

Additional comments from Reinhard Zumkeller, May 11 2002
Yaglom reference and mod formulas from Antreas P. Hatzipolakis (xpolakis(AT)otenet.gr), May 27 2000
The reference to Alcuin of York (735-804) was provided by Hermann Kremer (hermann.kremer(AT)onlinehome.de), Jun 18 2004

A103221 Number of partitions of n into parts 2 and 3.

Original entry on oeis.org

1, 0, 1, 1, 1, 1, 2, 1, 2, 2, 2, 2, 3, 2, 3, 3, 3, 3, 4, 3, 4, 4, 4, 4, 5, 4, 5, 5, 5, 5, 6, 5, 6, 6, 6, 6, 7, 6, 7, 7, 7, 7, 8, 7, 8, 8, 8, 8, 9, 8, 9, 9, 9, 9, 10, 9, 10, 10, 10, 10, 11, 10, 11, 11, 11, 11, 12, 11, 12, 12, 12, 12, 13, 12, 13, 13, 13, 13, 14, 13, 14, 14, 14, 14, 15, 14, 15, 15
Offset: 0

Views

Author

Michael Somos, Jan 25 2005

Keywords

Comments

Essentially the same as A008615.
Poincaré series [or Poincare series] for modular forms of weight w for the full modular group. As generators one may take the Eisenstein series E_4 (A004009) and E_6 (A013973).
Dimension of the space of weight 2n+12 cusp forms for Gamma_0( 1 ).
Dimension of the space of weight 2n cuspidal newforms for Gamma_0( 5 ).
a(n) is the number of partitions of n into two nonnegative parts congruent modulo 3. - Andrew Baxter, Jun 28 2006
Also number of equivalence classes of period 2n billiards on an equilateral triangle. - Andrew Baxter, Jun 06 2008
a(n) is also the number of 2-regular multigraphs on n vertices, where each component is either a pair of parallel edges, or a triangle. - Jason Kimberley, Oct 14 2011
For n>1, a(n) is the number of partitions of 2n into positive parts x,y, and z such that x>=y and y=z. This sequence is used in calculating the probability of the need for a run-off election when n voters randomly cast ballots for two of three candidates running for two empty slots on a county commission. - Dennis P. Walsh, Apr 25 2013
Also, Molien series for invariants of finite Coxeter group A_2. The Molien series for the finite Coxeter group of type A_k (k >= 1) has g.f. = 1/Product_{i=2..k+1} (1-x^i). Note that this is the root system A_k, not the alternating group Alt_k. - N. J. A. Sloane, Jan 11 2016
The coefficient of x^(2*n+1) in the power series expansion of the Weierstrass sigma function is a polynomial in the invariants g2 and g3 with a(n) terms. - Michael Somos, Jun 14 2016
a(n) is also the dimension of the complex vector space of modular forms M_{2*n} of weight 2*n and level 1 (full modular group). See Apostol p. 119, eq. (9) for k=2*n, and Ash and Gross, p. 178, Table 13.1. For a(6*k+1) = a(6*k+j)-1 for j = 0,2,3,4,5 and k >= 0 see A016921 (so-called dips, cf. Ash and Gross, p. 178.). - Wolfdieter Lang, Sep 16 2016
In an hexagonal tiling of the plane where the base tile is (0,0)--(2,1)--(3,3)--(1,4)--(-1,3)--(-2,1)--(0,0), a(n) is the number of vertices on the (n,0)--(n,n) closed line segment. - Luc Rousseau, Mar 22 2018

Examples

			For n=8, a(n)=2 since there are two partitions of 16 into 3 positive parts x, y, and z such that x >= y and y=z, namely, 16 = 8+4+4 and 16 = 6+5+5. - _Dennis P. Walsh_, Apr 25 2013
G.f. = 1 + x^2 + x^3 + x^4 + x^5 + 2*x^6 + x^7 + 2*x^8 + 2*x^9 + 2*x^10 + 2*x^11 + ...
		

References

  • T. M. Apostol, Modular Functions and Dirichlet Series in Number Theory, Springer-Verlag, 1990, page 119.
  • Avner Ash and Robert Gross, Summing it up, Princeton University Press, 2016, p. 178.
  • D. J. Benson, Polynomial Invariants of Finite Groups, Cambridge, 1993, p. 100.
  • E. Freitag, Siegelsche Modulfunktionen, Springer-Verlag, Berlin, 1983; p. 141, Th. 1.1.
  • R. C. Gunning, Lectures on Modular Forms. Princeton Univ. Press, Princeton, NJ, 1962.
  • J. E. Humphreys, Reflection Groups and Coxeter Groups, Cambridge, 1990. See Table 3.1, page 59.
  • J.-M. Kantor, Ou en sont les mathématiques, La formule de Molien-Weyl, SMF, Vuibert, p. 79
  • S. Mukai, An Introduction to Invariants and Moduli, Cambridge, 2003; see p. 26. - N. J. A. Sloane, Aug 28 2010.

Crossrefs

Cf. A008615, A001399 (partial sums), A128115, A171386, A081753.
Molien series for finite Coxeter groups A_1 through A_12 are A059841, A103221, A266755, A008667, A037145, A001996, and A266776, A266777, A266778, A266779, A266780, A266781.

Programs

  • Magma
    [Floor((n+2)/2)-Floor((n+2)/3): n in [0..100]]; // Vincenzo Librandi, Sep 18 2016
    
  • Maple
    A103221:=n->floor((n+2)/2)-floor((n+2)/3): # Andrew Baxter, Jun 06 2008
  • Mathematica
    a=b=c=d=0;Table[e=a+b-d+1;a=b;b=c;c=d;d=e,{n,100}] (* Vladimir Joseph Stephan Orlovsky, Feb 26 2011 *)
    LinearRecurrence[{0, 1, 1, 0, -1},{1, 0, 1, 1, 1},88] (* Ray Chandler, Sep 23 2015 *)
    a[ n_] := With[{m = Max[-5 - n, n]}, (-1)^Boole[n < 0] SeriesCoefficient[ 1 / ((1 - x^2) (1 - x^3)), {x, 0, m}]]; (* Michael Somos, Jun 02 2019 *)
  • PARI
    {a(n) = if( n<-4, -a(-5-n), polcoeff( 1 / ((1 - x^2) * (1 - x^3)) + x * O(x^n), n))};
    
  • PARI
    a(n)=n+=2; n\2 - n\3 \\ Charles R Greathouse IV, Jul 31 2017
    
  • Python
    def A103221(n): return (n>>1)+1-(n+2)//3 # Chai Wah Wu, Apr 15 2025
  • Sage
    def a(n) : return( len( CuspForms( Gamma0( 1), 2*n + 12, prec=1). basis())); # Michael Somos, May 29 2013
    

Formula

Euler transform of finite sequence [0, 1, 1] with offset 1, which is A171386.
a(n) = A008615(n+2). First differences of A001399.
a(n) = a(n-6) + 1 = a(n-2) + a(n-3) - a(n-5). - Henry Bottomley, Sep 02 2000
G.f.: 1/((1-x^2)*(1-x^3)).
a(n) = floor((n+2)/2) - floor((n+2)/3). - Andrew Baxter, Jun 06 2008
For odd n, a(n)=floor((n+3)/6). For even n, a(n)=floor((n+6)/6). - Dennis P. Walsh, Apr 25 2013
a(n) = floor(n/6)+1 unless n == 1 (mod 6); if n == 1 (mod 6), a(n) = floor(n/6). - Bob Selcoe, Sep 27 2014
a(n) = A081753(2*n); see the Dennis P. Walsh formula. - Wolfdieter Lang, Sep 16 2016
a(n)-a(n-2) = A079978(n). - R. J. Mathar, Jun 23 2021
E.g.f.: (3*(4 + x)*cosh(x) + exp(-x/2)*(6*cos(sqrt(3)*x/2) - 2*sqrt(3)*sin(sqrt(3)*x/2)) + 3*(1 + x)*sinh(x))/18. - Stefano Spezia, Mar 05 2023
a(n) = A008615(n-1)+A059841(n). - R. J. Mathar, May 03 2023

Extensions

Name changed by Wolfdieter Lang, Sep 16 2016

A008667 Expansion of g.f.: 1/((1-x^2)*(1-x^3)*(1-x^4)*(1-x^5)).

Original entry on oeis.org

1, 0, 1, 1, 2, 2, 3, 3, 5, 5, 7, 7, 10, 10, 13, 14, 17, 18, 22, 23, 28, 29, 34, 36, 42, 44, 50, 53, 60, 63, 71, 74, 83, 87, 96, 101, 111, 116, 127, 133, 145, 151, 164, 171, 185, 193, 207, 216, 232, 241, 258, 268, 286, 297, 316, 328, 348, 361, 382, 396, 419, 433, 457
Offset: 0

Views

Author

Keywords

Comments

Also, Molien series for invariants of finite Coxeter group A_4. The Molien series for the finite Coxeter group of type A_k (k >= 1) has g.f. = 1/Product_{i=2..k+1} (1-x^i). Note that this is the root system A_k not the alternating group Alt_k. - N. J. A. Sloane, Jan 11 2016
Number of partitions into parts 2, 3, 4, and 5. - Joerg Arndt, Apr 29 2014

Examples

			a(4)=2 because f''''(x)/4!=2 at x=0 for f=1/((1-x^2)(1-x^3)(1-x^4)(1-x^5)).
G.f. = 1 + x^2 + x^3 + 2*x^4 + 2*x^5 + 3*x^6 + 3*x^7 + 5*x^8 + 5*x^9 + 7*x^10 + 7*x^11 + ... .
		

References

  • J. E. Humphreys, Reflection Groups and Coxeter Groups, Cambridge, 1990. See Table 3.1, page 59.
  • L. Smith, Polynomial Invariants of Finite Groups, Peters, 1995, p. 199 (No. 32).

Crossrefs

Molien series for finite Coxeter groups A_1 through A_12 are A059841, A103221, A266755, A008667, A037145, A001996, and A266776-A266781.
Cf. A005044, A001401 (partial sums).

Programs

  • Magma
    R:=PowerSeriesRing(Integers(), 65); Coefficients(R!( 1/((1-x^2)*(1-x^3)*(1-x^4)*(1-x^5)) )); // G. C. Greubel, Sep 08 2019
    
  • Maple
    seq(coeff(series(1/((1-x^2)*(1-x^3)*(1-x^4)*(1-x^5)), x, n+1), x, n), n = 0..65); # G. C. Greubel, Sep 08 2019
  • Mathematica
    SeriesCoefficient[1/((1-x^2)(1-x^3)(1-x^4)(1-x^5)),{x,0,#}]&/@Range[0,100] (* or *) a[k_]=SeriesCoefficient[1/((1-x^2)(1-x^3)(1-x^4) (1-x^5)),{x,0,k}] (* Peter Pein (petsie(AT)dordos.net), Sep 09 2006 *)
    CoefficientList[Series[1/Times@@Table[(1-x^n),{n,2,5}],{x,0,70}],x] (* Harvey P. Dale, Feb 22 2018 *)
  • PARI
    {a(n) = if( n<-13, -a(-14 - n), polcoeff( prod( k=2, 5, 1 / (1 - x^k), 1 + x * O(x^n)), n))} /* Michael Somos, Oct 14 2006 */
    
  • Sage
    def A008667_list(prec):
        P. = PowerSeriesRing(ZZ, prec)
        return P(1/((1-x^2)*(1-x^3)*(1-x^4)*(1-x^5))).list()
    A008667_list(65) # G. C. Greubel, Sep 08 2019

Formula

Euler transform of length 5 sequence [ 0, 1, 1, 1, 1]. - Michael Somos, Sep 23 2006
a(-14 - n) = -a(n). - Michael Somos, Sep 23 2006
a(n) ~ 1/720*n^3. - Ralf Stephan, Apr 29 2014
a(n) = a(n-2) + a(n-3) + a(n-4) - a(n-6) - 2*a(n-7) - a(n-8) + a(n-10) + a(n-11) + a(n-12) - a(n-14). - David Neil McGrath, Sep 13 2014
From R. J. Mathar, Jun 23 2021: (Start)
a(n)-a(n-2) = A008680(n).
a(n)-a(n-3) = A025802(n).
a(n)-a(n-4) = A025795(n).
a(n)-a(n-5) = A005044(n+3). (End)
a(n)= floor((n^3 + 21*n^2 + 156*n - 45*n*(n mod 2) + 720)/720 - [(n mod 10)=1]/5). - Hoang Xuan Thanh, Aug 20 2025

A344414 Heinz numbers of integer partitions whose sum is at most twice their greatest part.

Original entry on oeis.org

2, 3, 4, 5, 6, 7, 9, 10, 11, 12, 13, 14, 15, 17, 19, 20, 21, 22, 23, 25, 26, 28, 29, 30, 31, 33, 34, 35, 37, 38, 39, 40, 41, 42, 43, 44, 46, 47, 49, 51, 52, 53, 55, 56, 57, 58, 59, 61, 62, 63, 65, 66, 67, 68, 69, 70, 71, 73, 74, 76, 77, 78, 79, 82, 83, 84, 85
Offset: 1

Views

Author

Gus Wiseman, May 19 2021

Keywords

Comments

The Heinz number of a partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k), giving a bijective correspondence between positive integers and integer partitions.

Examples

			The sequence of terms together with their prime indices begins:
     2: {1}        20: {1,1,3}    39: {2,6}
     3: {2}        21: {2,4}      40: {1,1,1,3}
     4: {1,1}      22: {1,5}      41: {13}
     5: {3}        23: {9}        42: {1,2,4}
     6: {1,2}      25: {3,3}      43: {14}
     7: {4}        26: {1,6}      44: {1,1,5}
     9: {2,2}      28: {1,1,4}    46: {1,9}
    10: {1,3}      29: {10}       47: {15}
    11: {5}        30: {1,2,3}    49: {4,4}
    12: {1,1,2}    31: {11}       51: {2,7}
    13: {6}        33: {2,5}      52: {1,1,6}
    14: {1,4}      34: {1,7}      53: {16}
    15: {2,3}      35: {3,4}      55: {3,5}
    17: {7}        37: {12}       56: {1,1,1,4}
    19: {8}        38: {1,8}      57: {2,8}
For example, 56 has prime indices {1,1,1,4} and 7 <= 2*4, so 56 is in the sequence. On the other hand, 224 has prime indices {1,1,1,1,1,4} and 9 > 2*4, so 224 is not in the sequence.
		

Crossrefs

These partitions are counted by A025065 but are different from palindromic partitions, which have Heinz numbers A265640.
The opposite even-weight version appears to be A320924, counted by A209816.
The opposite version appears to be A322109, counted by A110618.
The case of equality in the conjugate version is A340387.
The conjugate opposite version is A344291, counted by A110618.
The conjugate opposite 5-smooth case is A344293, counted by A266755.
The conjugate version is A344296, also counted by A025065.
The case of equality is A344415.
The even-weight case is A344416.
A001222 counts prime factors with multiplicity.
A027187 counts partitions of even length, ranked by A028260.
A056239 adds up prime indices, row sums of A112798.
A058696 counts partitions of even numbers, ranked by A300061.
A301987 lists numbers whose sum of prime indices equals their product.
A334201 adds up all prime indices except the greatest.

Programs

  • Mathematica
    primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    Select[Range[100],Max[primeMS[#]]>=Total[primeMS[#]]/2&]

Formula

A056239(a(n)) <= 2*A061395(a(n)).

A001996 Number of partitions of n into parts 2, 3, 4, 5, 6, 7.

Original entry on oeis.org

1, 0, 1, 1, 2, 2, 4, 4, 6, 7, 10, 11, 16, 17, 23, 26, 33, 37, 47, 52, 64, 72, 86, 96, 115, 127, 149, 166, 192, 212, 245, 269, 307, 338, 382, 419, 472, 515, 576, 629, 699, 760, 843, 913, 1007, 1091, 1197, 1293, 1416, 1525, 1663, 1790, 1945, 2088, 2265, 2426
Offset: 0

Views

Author

Keywords

Comments

Also, Molien series for invariants of finite Coxeter group A_6. The Molien series for the finite Coxeter group of type A_k (k >= 1) has G.f. = 1/Prod_{i=2..k+1} (1-x^i). - N. J. A. Sloane, Jan 11 2016
Cayley tabulates the coefficients in the expansion of H = 1 / ((1 - x^2) * (1 - x^4) * ... * (1 - x^14)) with even indices 0, 2, ..., 142.

Examples

			G.f. = 1 + x^2 + x^3 + 2*x^4 + 2*x^5 + 4*x^6 + 4*x^7 + 6*x^8 + 7*x^9 + ...
G.f. = 1 + q^2 + q^6 + 2*q^8 + 2*q^10 + 4*q^12 + 4*q^14 + 6*q^16 + ...
		

References

  • A. Cayley, Calculation of the minimum N.G.F. of the binary seventhic, Collected Mathematical Papers. Vols. 1-13, Cambridge Univ. Press, London, 1889-1897, Vol. 10, p. 408-419.
  • J. E. Humphreys, Reflection Groups and Coxeter Groups, Cambridge, 1990. See Table 3.1, page 59.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Molien series for finite Coxeter groups A_1 through A_12 are A059841, A103221, A266755, A008667, A037145, A001996, and A266776-A266781.

Programs

  • Mathematica
    nn = 102; t = CoefficientList[Series[1/((1 - x^4)*(1 - x^6)*(1 - x^8)*(1 - x^10)*(1 - x^12)*(1 - x^14)), {x, 0, nn}], x]; t = Take[t, {1, nn, 2}]

Formula

G.f.: 1/((1-x^2)*(1-x^3)*(1-x^4)*(1-x^5)*(1-x^6)*(1-x^7)).
Euler transform of length 7 sequence [ 0, 1, 1, 1, 1, 1, 1]. - Michael Somos, Apr 23 2014

Extensions

More terms from James Sellers, Feb 09 2000

A003402 G.f.: 1/((1-x)*(1-x^2)*(1-x^3)^2*(1-x^4)*(1-x^5)).

Original entry on oeis.org

1, 1, 2, 4, 6, 9, 14, 19, 27, 37, 49, 64, 84, 106, 134, 168, 207, 253, 309, 371, 445, 530, 626, 736, 863, 1003, 1163, 1343, 1543, 1766, 2017, 2291, 2597, 2935, 3305, 3712, 4161, 4647, 5181, 5763, 6394, 7079, 7825, 8627, 9497, 10436, 11445, 12531, 13702, 14952
Offset: 0

Views

Author

Keywords

Comments

Enumerates certain triangular arrays of integers.
Also, Molien series for invariants of finite Coxeter group D_6 (bisected). The Molien series for the finite Coxeter group of type D_k (k >= 3) has G.f. = 1/Prod_i (1-x^(1+m_i)) where the m_i are [1,3,5,...,2k-3,k-1]. If k is even only even powers of x appear, and we bisect the sequence. - N. J. A. Sloane, Jan 11 2016

References

  • J. E. Humphreys, Reflection Groups and Coxeter Groups, Cambridge, 1990. See Table 3.1, page 59.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Molien series for finite Coxeter groups D_3 through D_12 are A266755, A266769, A266768, A003402, and A266770-A266775.

Programs

  • Maple
    A079978:= n -> `if`(n mod 3 = 0, 1, 0):
    F:= n -> 1+floor((7913/17280)*n+(13/96)*n^2+(227/12960)*n^3+(1/960)*n^4+(1/43200)*n^5 + n/27*A079978(n) + n/128*(-1)^n):
    seq(F(n), n= 0..100); # Robert Israel, Apr 22 2015
  • Mathematica
    CoefficientList[Series[1/((1 - x) (1 - x^2) (1 - x^3)^2*(1 - x^4) (1 - x^5)), {x, 0, 49}], x] (* Michael De Vlieger, Feb 21 2018 *)
  • PARI
    Vec(1/((1-x)*(1-x^2)*(1-x^3)^2*(1-x^4)*(1-x^5)) + O(x^50)) \\ Jinyuan Wang, Mar 10 2020

Formula

a(n) = a(n-1) + b(n), b(n) = b(n-2) + c(n) - e(n), c(n) = c(n-3) + 2e(n), e(n) = e(n - 4) + f(n), f(n) = f(n - 5) + g(n), g(n) = g(n - 6), g(0) = 1, all functions are 0 for negative indexes. [From Miller paper.] - Sean A. Irvine, Apr 22 2015
a(n) = 1 + floor((7913/17280)*n + (13/96)*n^2 + (227/12960)*n^3 + (1/960)*n^4 + (1/43200)*n^5 + n/27*A079978(n) + n/128*(-1)^n). - Robert Israel, Apr 22 2015

Extensions

Entry revised by N. J. A. Sloane, Apr 22 2015

A037145 Expansion of 1/((1-x^2)(1-x^3)...(1-x^6)).

Original entry on oeis.org

1, 0, 1, 1, 2, 2, 4, 3, 6, 6, 9, 9, 14, 13, 19, 20, 26, 27, 36, 36, 47, 49, 60, 63, 78, 80, 97, 102, 120, 126, 149, 154, 180, 189, 216, 227, 260, 270, 307, 322, 361, 378, 424, 441, 492, 515, 568, 594, 656, 682, 750
Offset: 0

Views

Author

Keywords

Comments

Also, Molien series for invariants of finite Coxeter group A_5. The Molien series for the finite Coxeter group of type A_k (k >= 1) has G.f. = 1/Prod_{i=2..k+1} (1-x^i). - N. J. A. Sloane, Jan 11 2016

References

  • J. E. Humphreys, Reflection Groups and Coxeter Groups, Cambridge, 1990. See Table 3.1, page 59.

Crossrefs

Molien series for finite Coxeter groups A_1 through A_12 are A059841, A103221, A266755, A008667, A037145, A001996, and A266776-A266781.
Cf. A001402 (partial sums).

Programs

  • Mathematica
    CoefficientList[Series[1/Times@@Table[(1-x^n),{n,2,6}],{x,0,50}],x] (* Harvey P. Dale, Dec 25 2012 *)

A266769 Expansion of 1/((1-x)*(1-x^2)^2*(1-x^3)).

Original entry on oeis.org

1, 1, 3, 4, 7, 9, 14, 17, 24, 29, 38, 45, 57, 66, 81, 93, 111, 126, 148, 166, 192, 214, 244, 270, 305, 335, 375, 410, 455, 495, 546, 591, 648, 699, 762, 819, 889, 952, 1029, 1099, 1183, 1260, 1352, 1436, 1536, 1628, 1736, 1836, 1953, 2061
Offset: 0

Views

Author

N. J. A. Sloane, Jan 10 2016

Keywords

Comments

This is the same as A008763 but without the four leading zeros. There are so many situations where one wants this sequence rather than A008763 that it seems appropriate for it to have its own entry.
But see A008763 (still the main entry) for numerous applications and references.
Also, Molien series for invariants of finite Coxeter group D_4 (bisected).
The Molien series for the finite Coxeter group of type D_k (k >= 3) has G.f. = 1/Prod_i (1-x^(1+m_i)) where the m_i are [1,3,5,...,2k-3,k-1]. If k is even only even powers of x appear, and we bisect the sequence.
Euler transform of length 3 sequence [1, 2, 1]. - Michael Somos, Jun 26 2017
a(n) is the number of partitions of n into parts 1, 2, and 3, where there are two sorts of parts 2. - Joerg Arndt, Jun 27 2017

References

  • J. E. Humphreys, Reflection Groups and Coxeter Groups, Cambridge, 1990. See Table 3.1, page 59.

Crossrefs

Molien series for finite Coxeter groups D_3 through D_12 are A266755, A266769, A266768, A003402, and A266770-A266775.
A variant of A008763.

Programs

  • Magma
    I:=[1,1,3,4,7,9,14,17]; [n le 8 select I[n] else Self(n-1)+2*Self(n-2)-Self(n-3)-2*Self(n-4)-Self(n-5)+2*Self(n-6)+Self(n-7)-Self(n-8): n in [1..60]]; // Vincenzo Librandi, Jan 11 2016
    
  • Mathematica
    CoefficientList[Series[1/((1-x)*(1-x^2)^2*(1-x^3)), {x, 0, 50}], x] (* JungHwan Min, Jan 10 2016 *)
    LinearRecurrence[{1, 2, -1, -2, -1, 2, 1, -1}, {1, 1, 3, 4, 7, 9, 14, 17}, 100] (* Vincenzo Librandi, Jan 11 2016 *)
  • PARI
    Vec(1/((1-x)*(1-x^2)^2*(1-x^3)) + O(x^100)) \\ Michel Marcus, Jan 11 2016
    
  • PARI
    {a(n) = (9*(n+4)*(-1)^n + 2*n^3 + 24*n^2 + 87*n + 157) \ 144}; /* Michael Somos, Jun 26 2017 */

Formula

a(n) = a(n-1) + 2*a(n-2) - a(n-3) - 2*a(n-4) - a(n-5) + 2*a(n-6) + a(n-7) - a(n-8) for n>7. - Vincenzo Librandi, Jan 11 2016
a(n) = -a(-8-n) for all n in Z. - Michael Somos, Jun 26 2017

A266776 Molien series for invariants of finite Coxeter group A_7.

Original entry on oeis.org

1, 0, 1, 1, 2, 2, 4, 4, 7, 7, 11, 12, 18, 19, 27, 30, 40, 44, 58, 64, 82, 91, 113, 126, 155, 171, 207, 230, 274, 303, 358, 395, 462, 509, 589, 649, 746, 818, 934, 1024, 1161, 1269, 1432, 1562, 1753, 1909, 2131, 2317, 2577, 2794, 3095, 3352, 3698, 3997, 4396, 4743, 5200, 5601, 6121, 6584, 7177, 7705, 8377, 8983, 9741, 10429, 11285, 12065
Offset: 0

Views

Author

N. J. A. Sloane, Jan 11 2016

Keywords

Comments

The Molien series for the finite Coxeter group of type A_k (k >= 1) has g.f. = 1/Product_{i=2..k+1} (1 - x^i).
Note that this is the root system A_k, not the alternating group Alt_k.

References

  • J. E. Humphreys, Reflection Groups and Coxeter Groups, Cambridge, 1990. See Table 3.1, page 59.

Crossrefs

Molien series for finite Coxeter groups A_1 through A_12 are A059841, A103221, A266755, A008667, A037145, A001996, and A266776-A266781.

Programs

  • Magma
    m:=40; R:=PowerSeriesRing(Integers(), m); Coefficients(R!(1/(&*[1-t^k: k in [2..8]]))); // G. C. Greubel, Oct 24 2018
  • Mathematica
    CoefficientList[Series[1/Product[1-t^k, {k,2,8}], {t, 0, 40}], t] (* G. C. Greubel, Oct 24 2018 *)
  • PARI
    t='t+O('t^40); Vec(1/prod(k=2,8, 1-t^k)) \\ G. C. Greubel, Oct 24 2018
    

Formula

G.f.: 1/((1-t^2)*(1-t^3)*(1-t^4)*(1-t^5)*(1-t^6)*(1-t^7)*(1-t^8)).

A266781 Molien series for invariants of finite Coxeter group A_12.

Original entry on oeis.org

1, 0, 1, 1, 2, 2, 4, 4, 7, 8, 12, 14, 21, 24, 33, 40, 53, 63, 83, 98, 126, 150, 188, 223, 278, 327, 401, 473, 573, 672, 809, 944, 1126, 1312, 1551, 1800, 2118, 2446, 2859, 3295, 3829, 4395, 5086, 5817, 6699, 7642, 8760, 9961, 11380, 12898, 14678, 16596, 18819, 21217, 23987, 26971, 30397, 34099, 38316, 42877, 48058, 53649, 59972, 66811
Offset: 0

Views

Author

N. J. A. Sloane, Jan 11 2016

Keywords

Comments

The Molien series for the finite Coxeter group of type A_k (k >= 1) has g.f. = 1/Product_{i=2..k+1} (1 - x^i).
Note that this is the root system A_k, not the alternating group Alt_k.

References

  • J. E. Humphreys, Reflection Groups and Coxeter Groups, Cambridge, 1990. See Table 3.1, page 59.

Crossrefs

Molien series for finite Coxeter groups A_1 through A_12 are A059841, A103221, A266755, A008667, A037145, A001996, and A266776-A266781.

Programs

  • Magma
    R:=PowerSeriesRing(Integers(), 70); Coefficients(R!( 1/(&*[1-x^j: j in [2..13]]) )); // G. C. Greubel, Feb 04 2020
    
  • Maple
    S:=series(1/mul(1-x^j, j=2..13)), x, 75):
    seq(coeff(S, x, j), j=0..70); # G. C. Greubel, Feb 04 2020
  • Mathematica
    CoefficientList[Series[1/Product[1-x^j, {j,2,13}], {x,0,70}], x] (* G. C. Greubel, Feb 04 2020 *)
    LinearRecurrence[{0,1,1,1,0,0,-1,-1,-1,-1,-1,0,0,-1,0,1,2,3,3,3,2,0,-1,-2,-3,-4,-4,-5,-4,-3,-1,1,3,5,7,7,6,5,3,2,-1,-4,-6,-7,-8,-7,-6,-4,-1,2,3,5,6,7,7,5,3,1,-1,-3,-4,-5,-4,-4,-3,-2,-1,0,2,3,3,3,2,1,0,-1,0,0,-1,-1,-1,-1,-1,0,0,1,1,1,0,-1},{1,0,1,1,2,2,4,4,7,8,12,14,21,24,33,40,53,63,83,98,126,150,188,223,278,327,401,473,573,672,809,944,1126,1312,1551,1800,2118,2446,2859,3295,3829,4395,5086,5817,6699,7642,8760,9961,11380,12898,14678,16596,18819,21217,23987,26971,30397,34099,38316,42877,48058,53649,59972,66811,74499,82813,92136,102204,113455,125613,139140,153754,169979,187481,206857,227767,250835,275713,303108,332617,365036,399950,438201,479372,524403,572813,625657,682451,744307,810735},80] (* Harvey P. Dale, Jul 01 2021 *)
  • PARI
    Vec( 1/prod(j=2,13, 1-x^j) +O('x^70) ) \\ G. C. Greubel, Feb 04 2020
    
  • Sage
    def A266781_list(prec):
        P. = PowerSeriesRing(ZZ, prec)
        return P( 1/prod(1-x^j for j in (2..13)) ).list()
    A266781_list(70) # G. C. Greubel, Feb 04 2020

Formula

G.f.: 1/((1-t^2)*(1-t^3)*(1-t^4)*(1-t^5)*(1-t^6)*(1-t^7)*(1-t^8)*(1-t^9)*(1-t^10)*(1-t^11)*(1-t^12)*(1-t^13)).
Showing 1-10 of 26 results. Next