cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 36 results. Next

A128115 Mobius inversion of A103221.

Original entry on oeis.org

0, 1, 0, 0, 1, 0, 1, 1, 1, 0, 2, 1, 2, 1, 1, 1, 3, 1, 3, 2, 2, 1, 4, 1, 3, 2, 3, 2, 5, 2, 5, 3, 3, 2, 4, 2, 6, 3, 4, 2, 7, 2, 7, 4, 4, 3, 8, 3, 7, 4, 5, 4, 9, 3, 6, 4, 6, 4, 10, 2, 10, 5, 6, 5, 8, 4, 11, 6, 7, 4, 12, 4, 12, 6, 7, 6, 10, 4, 13, 6, 9, 6, 14, 4, 10, 7, 9, 6, 15, 4, 12, 8, 10, 7, 12, 5, 16, 7
Offset: 1

Views

Author

Paulo de Almeida Sachs (sachs6(AT)yahoo.de), Feb 15 2007

Keywords

Comments

Number of uniform n-grammic crossed antiprisms.
Agrees with Mobius inversion of A008615 for n != 3. - Andrew Baxter, Jun 06 2008
Number of primitive equivalence classes of period 2n billiards on an equilateral triangle. - Andrew Baxter, Jun 06 2008

Crossrefs

Programs

Formula

SUM_{d|n} mu(d) * A103221(n/d), where mu is Mobius function (A008683). - Andrew Baxter, Jun 06 2008

Extensions

Edited by Andrew Baxter, Jun 06 2008

A016921 a(n) = 6*n + 1.

Original entry on oeis.org

1, 7, 13, 19, 25, 31, 37, 43, 49, 55, 61, 67, 73, 79, 85, 91, 97, 103, 109, 115, 121, 127, 133, 139, 145, 151, 157, 163, 169, 175, 181, 187, 193, 199, 205, 211, 217, 223, 229, 235, 241, 247, 253, 259, 265, 271, 277, 283, 289, 295, 301, 307, 313, 319, 325, 331
Offset: 0

Views

Author

Keywords

Comments

Apart from initial term(s), dimension of the space of weight 2n cusp forms for Gamma_0( 22 ).
Also solutions to 2^x + 3^x == 5 (mod 7). - Cino Hilliard, May 10 2003
Except for 1, exponents n > 1 such that x^n - x^2 - 1 is reducible. - N. J. A. Sloane, Jul 19 2005
Let M(n) be the n X n matrix m(i,j) = min(i,j); then the trace of M(n)^(-2) is a(n-1) = 6*n - 5. - Benoit Cloitre, Feb 09 2006
If Y is a 3-subset of an (2n+1)-set X then, for n >= 3, a(n-1) is the number of 3-subsets of X having at least two elements in common with Y. - Milan Janjic, Dec 16 2007
All composite terms belong to A269345 as shown in there. - Waldemar Puszkarz, Apr 13 2016
First differences of the number of active (ON, black) cells in n-th stage of growth of two-dimensional cellular automaton defined by "Rule 773", based on the 5-celled von Neumann neighborhood. - Robert Price, May 23 2016
For b(n) = A103221(n) one has b(a(n)-1) = b(a(n)+1) = b(a(n)+2) = b(a(n)+3) = b(a(n)+4) = n+1 but b(a(n)) = n. So-called "dips" in A103221. See the Avner and Gross remark on p. 178. - Wolfdieter Lang, Sep 16 2016
A (n+1,n) pebbling move involves removing n + 1 pebbles from a vertex in a simple graph and placing n pebbles on an adjacent vertex. A two-player impartial (n+1,n) pebbling game involves two players alternating (n+1,n) pebbling moves. The first player unable to make a move loses. The sequence a(n) is also the minimum number of pebbles such that any assignment of those pebbles on a complete graph with 3 vertices is a next-player winning game in the two player impartial (k+1,k) pebbling game. These games are represented by A347637(3,n). - Joe Miller, Oct 18 2021
Interleaving of A017533 and A017605. - Leo Tavares, Nov 16 2021

Examples

			From _Ilya Gutkovskiy_, Apr 15 2016: (Start)
Illustration of initial terms:
                      o
                    o o o
              o     o o o
            o o o   o o o
      o     o o o   o o o
    o o o   o o o   o o o
o   o o o   o o o   o o o
n=0  n=1     n=2     n=3
(End)
		

References

  • Avner Ash and Robert Gross, Summing it up, Princeton University Press, 2016, p. 178.

Crossrefs

Cf. A093563 ((6, 1) Pascal, column m=1).
a(n) = A007310(2*(n+1)); complement of A016969 with respect to A007310.
Cf. A287326 (second column).

Programs

Formula

a(n) = 6*n + 1, n >= 0 (see the name).
G.f.: (1+5*x)/(1-x)^2.
A008615(a(n)) = n. - Reinhard Zumkeller, Feb 27 2008
A157176(a(n)) = A013730(n). - Reinhard Zumkeller, Feb 24 2009
a(n) = 4*(3*n-1) - a(n-1) (with a(0)=1). - Vincenzo Librandi, Nov 20 2010
E.g.f.: (1 + 6*x)*exp(x). - G. C. Greubel, Sep 18 2019
a(n) = A003215(n) - 6*A000217(n-1). See Hexagonal Lines illustration. - Leo Tavares, Sep 10 2021
From Leo Tavares, Oct 27 2021: (Start)
a(n) = 6*A001477(n-1) + 7
a(n) = A016813(n) + 2*A001477(n)
a(n) = A017605(n-1) + A008588(n-1)
a(n) = A016933(n) - 1
a(n) = A008588(n) + 1. (End)
Sum_{n>=0} (-1)^n/a(n) = Pi/6 + sqrt(3)*arccoth(sqrt(3))/3. - Amiram Eldar, Dec 10 2021

A008615 a(n) = floor(n/2) - floor(n/3).

Original entry on oeis.org

0, 0, 1, 0, 1, 1, 1, 1, 2, 1, 2, 2, 2, 2, 3, 2, 3, 3, 3, 3, 4, 3, 4, 4, 4, 4, 5, 4, 5, 5, 5, 5, 6, 5, 6, 6, 6, 6, 7, 6, 7, 7, 7, 7, 8, 7, 8, 8, 8, 8, 9, 8, 9, 9, 9, 9, 10, 9, 10, 10, 10, 10, 11, 10, 11, 11, 11, 11, 12, 11, 12, 12, 12, 12, 13, 12, 13, 13, 13, 13, 14, 13, 14, 14, 14, 14, 15, 14
Offset: 0

Views

Author

Keywords

Comments

If the two leading 0's are dropped, this becomes the essentially identical sequence A103221, with g.f. 1/((1-x^2)*(1-x^3)), which arises in many contexts. For example, 1/((1-x^4)*(1-x^6)) is the Poincaré series [or Poincare series] for modular forms of weight w for the full modular group. As generators one may take the Eisenstein series E_4 (A004009) and E_6 (A013973).
Dimension of the space of weight 2n+8 cusp forms for Gamma_0( 1 ).
Apart from initial term(s), dimension of the space of weight 2n cuspidal newforms for Gamma_0( 5 ).
a(n) is the number of ways n can be written as the sum of a positive even number and a nonnegative multiple of 3 and so the number of ways (n-2) can be written as the sum of a nonnegative even number and a nonnegative multiple of 3 and also the number of ways (n+3) can be written as the sum of a positive even number and a positive multiple of 3.
It appears that this is also the number of partitions of 2n+6 that are 4-term arithmetic progressions. - John W. Layman, May 01 2009 [verified by Wesley Ivan Hurt, Jan 17 2021]
a(n) is the number of (n+3)-digit fixed points under the base-3 Kaprekar map A164993 (see A164997 for the list of fixed points). - Joseph Myers, Sep 04 2009
Starting from n=10 also the number of balls in new consecutive hexagonal edges, if an (infinite) chain of balls is winded spirally around the first ball at the center, such that each six steps make an entire winding. - K. G. Stier, Dec 21 2012
In any three consecutive terms at least two of them are equal to each other. - Michael Somos, Mar 01 2014
Number of partitions of (n-2) into parts 2 and 3. - David Neil McGrath, Sep 05 2014
a(n), n >= 0, is also the dimension of S_{2*(n+4)}, the complex vector space of modular cusp forms of weight 2*(n+4) and level 1 (full modular group). The dimension of S_0, S_2, S_4 and S_6 is 0. See, e.g., Ash and Gross, p. 178. Table 13.1. - Wolfdieter Lang, Sep 16 2016
From Wolfdieter Lang, May 08 2017: (Start)
a(n-2) = floor((n-2)/2) - floor((n-2)/3) = floor(n/2) - floor((n+1)/3) is for n >=0 the number of integers k in the interval (n+1)/3 < k <= floor(n/2). This problem appears in the computation of the number of zeros of Chebyshev S(n, x) polynomials (coefficients in A049310) in the open interval (-1, +1). See a comment there. This computation was motivated by a conjecture given in A008611 by Michel Lagneau, Mar 31 2017.
a(n) is also the number of integers k in the closed interval (n+1)/3 <= k <= floor(n/2), which is floor(n/2) - (ceiling((n+1)/3) - 1) for n >= 0 (proof trivial for n+1 == 0 (mod 3) and otherwise). From the preceding statement this a(n) is also a(n-2) + [n == 2 (mod 3)] for n >= 0 (with [statement] = 1 if the statement is true and zero otherwise). This proves the recurrence given by Michael Somos in the formula section. (End)
Assuming the Collatz conjecture to be true, for n > 1, a(n+7) is the row length of the n-th row of A340985. That is, the number of weakly connected components of the Collatz digraph of order n. - Sebastian Karlsson, Feb 23 2021

Examples

			G.f. = x^2 + x^4 + x^5 + x^6 + x^7 + 2*x^8 + x^9 + 2*x^10 + 2*x^11 + 2*x^12 + ...
		

References

  • Avner Ash and Robert Gross, Summing it up, Princeton University Press, 2016, p. 178.
  • D. J. Benson, Polynomial Invariants of Finite Groups, Cambridge, 1993, p. 100.
  • E. Freitag, Siegelsche Modulfunktionen, Springer-Verlag, Berlin, 1983; p. 141, Th. 1.1.
  • R. C. Gunning, Lectures on Modular Forms. Princeton Univ. Press, Princeton, NJ, 1962.
  • J.-M. Kantor, Où en sont les mathématiques, La formule de Molien-Weyl, SMF, Vuibert, p. 79

Crossrefs

Essentially the same as A103221.
First differences of A069905 (and A001399).

Programs

  • Haskell
    a008615 n = n `div` 2 - n `div` 3  -- Reinhard Zumkeller, Apr 28 2014
    
  • Magma
    [Floor(n/2)-Floor(n/3): n in [0..10]]; // Sergei Haller (sergei(AT)sergei-haller.de), Dec 21 2006
    
  • Magma
    a := func< n | n lt 2 select 0 else n eq 2 select 1 else Dimension( ModularForms( PSL2( Integers()), 2*n-4))>; /* Michael Somos, Dec 11 2018 */
    
  • Maple
    a := n-> floor(n/2) - floor(n/3): seq(a(n), n = 0 .. 87);
  • Mathematica
    a[n_]:=Floor[n/2]-Floor[n/3]; Array[a,90,0] (* Vladimir Joseph Stephan Orlovsky, Dec 05 2008; corrected by Harvey P. Dale, Nov 30 2011 *)
    LinearRecurrence[{0, 1, 1, 0, -1}, {0, 0, 1, 0, 1}, 100]; (* Vincenzo Librandi, Sep 09 2015 *)
  • PARI
    {a(n) = (n\2) - (n\3)}; /* Michael Somos, Feb 06 2003 */
    
  • Python
    def A008615(n): return n//2 - n//3 # Chai Wah Wu, Jun 07 2022

Formula

a(n) = a(n-6) + 1 = a(n-2) + a(n-3) - a(n-5). - Henry Bottomley, Sep 02 2000
G.f.: x^2 / ((1-x^2) * (1-x^3)).
From Reinhard Zumkeller, Feb 27 2008: (Start)
a(A016933(n)) = a(A016957(n)) = a(A016969(n)) = n+1.
a(A008588(n)) = a(A016921(n)) = a(A016945(n)) = n. (End)
a(6*k) = k, k >= 0. - Zak Seidov, Sep 09 2012
a(n) = A005044(n+1) - A005044(n-3). - Johannes W. Meijer, Oct 18 2013
a(n) = floor((n+4)/6) - floor((n+3)/6) + floor((n+2)/6). - Mircea Merca, Nov 27 2013
Euler transform of length 3 sequence [0, 1, 1]. - Michael Somos, Mar 01 2014
a(n+2) = a(n) + 1 if n == 0 (mod 3), a(n+2) = a(n) otherwise. - Michael Somos, Mar 01 2014. See the May 08 2017 comment above. - Wolfdieter Lang, May 08 2017
a(n) = -a(-1 - n) for all n in Z. - Michael Somos, Mar 01 2014.
a(n) = A004526(n) - A002264(n). - Reinhard Zumkeller, Apr 28 2014
a(n) = Sum_{i=0..n-2} (floor(i/6)-floor((i-3)/6))*(-1)^i. - Wesley Ivan Hurt, Sep 08 2015
a(n) = a(n+6) - 1 = A103221(n+4) - 1, n >= 0. - Wolfdieter Lang, Sep 16 2016
12*a(n) = 2*n +1 +3*(-1)^n -4*A057078(n). - R. J. Mathar, Jun 19 2019
a(n) = Sum_{k=1..floor((n+3)/2)} Sum_{j=k..floor((2*n+6-k)/3)} Sum_{i=j..floor((2*n+6-j-k)/2)} ([j-k = i-j = 2*n+6-2*i-j-k] - [k = j = i = 2*n+6-i-j-k]), where [ ] is the (generalized) Iverson bracket. - Wesley Ivan Hurt, Jan 17 2021
E.g.f.: (3*(2 + x)*cosh(x) - 2*exp(-x/2)*(3*cos(sqrt(3)*x/2) + sqrt(3)*sin(sqrt(3)*x/2)) + 3*(x-1)*sinh(x))/18. - Stefano Spezia, Oct 17 2022

A266755 Expansion of 1/((1-x^2)*(1-x^3)*(1-x^4)).

Original entry on oeis.org

1, 0, 1, 1, 2, 1, 3, 2, 4, 3, 5, 4, 7, 5, 8, 7, 10, 8, 12, 10, 14, 12, 16, 14, 19, 16, 21, 19, 24, 21, 27, 24, 30, 27, 33, 30, 37, 33, 40, 37, 44, 40, 48, 44, 52, 48, 56, 52, 61, 56, 65, 61, 70, 65, 75, 70, 80, 75, 85, 80, 91, 85, 96, 91, 102, 96, 108, 102, 114, 108, 120, 114, 127, 120, 133, 127, 140, 133, 147, 140, 154, 147, 161, 154, 169
Offset: 0

Views

Author

N. J. A. Sloane, Jan 10 2016

Keywords

Comments

This is the same as A005044 but without the three leading zeros. There are so many situations where one wants this sequence rather than A005044 that it seems appropriate for it to have its own entry.
But see A005044 (still the main entry) for numerous applications and references.
Also, Molien series for invariants of finite Coxeter group D_3.
The Molien series for the finite Coxeter group of type D_k (k >= 3) has g.f. = 1/Product_i (1-x^(1+m_i)) where the m_i are [1,3,5,...,2k-3,k-1]. If k is even only even powers of x appear, and we bisect the sequence.
Also, Molien series for invariants of finite Coxeter group A_3. The Molien series for the finite Coxeter group of type A_k (k >= 1) has g.f. = 1/Product_{i=2..k+1} (1-x^i). Note that this is the root system A_k not the alternating group Alt_k.
a(n) is the number of partitions of n into parts 2, 3, and 4. - Joerg Arndt, Apr 16 2017
From Gus Wiseman, May 23 2021: (Start)
Also the number of integer partitions of n into at most n/2 parts, none greater than 3. The case of any maximum is A110618. The case of any length is A001399. The Heinz numbers of these partitions are given by A344293.
For example, the a(2) = 1 through a(13) = 5 partitions are:
2 3 22 32 33 322 332 333 3322 3332 3333 33322
31 222 331 2222 3222 3331 32222 33222 33331
321 3221 3321 22222 33221 33321 322222
3311 32221 33311 222222 332221
33211 322221 333211
332211
333111
(End)

Examples

			G.f. = 1 + x^2 + x^3 + 2*x^4 + x^5 + 3*x^6 + 2*x^7 + 4*x^8 + ... - _Michael Somos_, Jan 29 2022
		

References

  • J. E. Humphreys, Reflection Groups and Coxeter Groups, Cambridge, 1990. See Table 3.1, page 59.

Crossrefs

Molien series for finite Coxeter groups A_1 through A_12 are A059841, A103221, A266755, A008667, A037145, A001996, and A266776-A266781.
Molien series for finite Coxeter groups D_3 through D_12 are A266755, A266769, A266768, A003402, and A266770-A266775.
A variant of A005044.
Cf. A001400 (partial sums).
Cf. A308065.
Number of partitions of n whose Heinz number is in A344293.
A001399 counts partitions with all parts <= 3, ranked by A051037.
A025065 counts partitions of n with >= n/2 parts, ranked by A344296.
A035363 counts partitions of n with n/2 parts, ranked by A340387.
A110618 counts partitions of n into at most n/2 parts, ranked by A344291.

Programs

  • Magma
    I:=[1,0,1,1,2,1,3,2,4]; [n le 9 select I[n] else Self(n-2)+ Self(n-3)+Self(n-4)-Self(n-5)-Self(n-6)-Self(n-7)+Self(n-9): n in [1..100]]; // Vincenzo Librandi, Jan 11 2016
    
  • Mathematica
    CoefficientList[Series[1/((1-x^2)(1-x^3)(1-x^4)), {x, 0, 100}], x] (* JungHwan Min, Jan 10 2016 *)
    LinearRecurrence[{0,1,1,1,-1,-1,-1,0,1}, {1,0,1,1,2,1,3,2,4}, 100] (* Vincenzo Librandi, Jan 11 2016 *)
    Table[Length[Select[IntegerPartitions[n],Length[#]<=n/2&&Max@@#<=3&]],{n,0,30}] (* Gus Wiseman, May 23 2021 *)
    a[ n_] := Round[(n + 3*(2 - Mod[n,2]))^2/48]; (* Michael Somos, Jan 29 2022 *)
  • PARI
    Vec(1/((1-x^2)*(1-x^3)*(1-x^4)) + O(x^100)) \\ Michel Marcus, Jan 11 2016
    
  • PARI
    {a(n) = round((n + 3*(2-n%2))^2/48)}; /* Michael Somos, Jan 29 2022 */
    
  • Sage
    (1/((1-x^2)*(1-x^3)*(1-x^4))).series(x, 100).coefficients(x, sparse=False) # G. C. Greubel, Jun 13 2019

Formula

a(n) = a(n-2) + a(n-3) + a(n-4) - a(n-5) - a(n-6) - a(n-7) + a(n-9) for n>8. - Vincenzo Librandi, Jan 11 2016
a(n) = a(-9-n) for all n in Z. a(n) = a(n+3) for all n in 2Z. - Michael Somos, Jan 29 2022
E.g.f.: exp(-x)*(81 - 18*x + exp(2*x)*(107 + 60*x + 6*x^2) + 64*exp(x/2)*cos(sqrt(3)*x/2) + 36*exp(x)*(cos(x) - sin(x)))/288. - Stefano Spezia, Mar 05 2023
For n >= 3, if n is even, a(n) = a(n-3) + floor(n/4) + 1, otherwise a(n) = a(n-3). - Robert FERREOL, Feb 05 2024
a(n) = floor((n^2+9*n+(3*n+9)*(-1)^n+39)/48). - Hoang Xuan Thanh, Jun 03 2025

A008667 Expansion of g.f.: 1/((1-x^2)*(1-x^3)*(1-x^4)*(1-x^5)).

Original entry on oeis.org

1, 0, 1, 1, 2, 2, 3, 3, 5, 5, 7, 7, 10, 10, 13, 14, 17, 18, 22, 23, 28, 29, 34, 36, 42, 44, 50, 53, 60, 63, 71, 74, 83, 87, 96, 101, 111, 116, 127, 133, 145, 151, 164, 171, 185, 193, 207, 216, 232, 241, 258, 268, 286, 297, 316, 328, 348, 361, 382, 396, 419, 433, 457
Offset: 0

Views

Author

Keywords

Comments

Also, Molien series for invariants of finite Coxeter group A_4. The Molien series for the finite Coxeter group of type A_k (k >= 1) has g.f. = 1/Product_{i=2..k+1} (1-x^i). Note that this is the root system A_k not the alternating group Alt_k. - N. J. A. Sloane, Jan 11 2016
Number of partitions into parts 2, 3, 4, and 5. - Joerg Arndt, Apr 29 2014

Examples

			a(4)=2 because f''''(x)/4!=2 at x=0 for f=1/((1-x^2)(1-x^3)(1-x^4)(1-x^5)).
G.f. = 1 + x^2 + x^3 + 2*x^4 + 2*x^5 + 3*x^6 + 3*x^7 + 5*x^8 + 5*x^9 + 7*x^10 + 7*x^11 + ... .
		

References

  • J. E. Humphreys, Reflection Groups and Coxeter Groups, Cambridge, 1990. See Table 3.1, page 59.
  • L. Smith, Polynomial Invariants of Finite Groups, Peters, 1995, p. 199 (No. 32).

Crossrefs

Molien series for finite Coxeter groups A_1 through A_12 are A059841, A103221, A266755, A008667, A037145, A001996, and A266776-A266781.
Cf. A005044, A001401 (partial sums).

Programs

  • Magma
    R:=PowerSeriesRing(Integers(), 65); Coefficients(R!( 1/((1-x^2)*(1-x^3)*(1-x^4)*(1-x^5)) )); // G. C. Greubel, Sep 08 2019
    
  • Maple
    seq(coeff(series(1/((1-x^2)*(1-x^3)*(1-x^4)*(1-x^5)), x, n+1), x, n), n = 0..65); # G. C. Greubel, Sep 08 2019
  • Mathematica
    SeriesCoefficient[1/((1-x^2)(1-x^3)(1-x^4)(1-x^5)),{x,0,#}]&/@Range[0,100] (* or *) a[k_]=SeriesCoefficient[1/((1-x^2)(1-x^3)(1-x^4) (1-x^5)),{x,0,k}] (* Peter Pein (petsie(AT)dordos.net), Sep 09 2006 *)
    CoefficientList[Series[1/Times@@Table[(1-x^n),{n,2,5}],{x,0,70}],x] (* Harvey P. Dale, Feb 22 2018 *)
  • PARI
    {a(n) = if( n<-13, -a(-14 - n), polcoeff( prod( k=2, 5, 1 / (1 - x^k), 1 + x * O(x^n)), n))} /* Michael Somos, Oct 14 2006 */
    
  • Sage
    def A008667_list(prec):
        P. = PowerSeriesRing(ZZ, prec)
        return P(1/((1-x^2)*(1-x^3)*(1-x^4)*(1-x^5))).list()
    A008667_list(65) # G. C. Greubel, Sep 08 2019

Formula

Euler transform of length 5 sequence [ 0, 1, 1, 1, 1]. - Michael Somos, Sep 23 2006
a(-14 - n) = -a(n). - Michael Somos, Sep 23 2006
a(n) ~ 1/720*n^3. - Ralf Stephan, Apr 29 2014
a(n) = a(n-2) + a(n-3) + a(n-4) - a(n-6) - 2*a(n-7) - a(n-8) + a(n-10) + a(n-11) + a(n-12) - a(n-14). - David Neil McGrath, Sep 13 2014
From R. J. Mathar, Jun 23 2021: (Start)
a(n)-a(n-2) = A008680(n).
a(n)-a(n-3) = A025802(n).
a(n)-a(n-4) = A025795(n).
a(n)-a(n-5) = A005044(n+3). (End)
a(n)= floor((n^3 + 21*n^2 + 156*n - 45*n*(n mod 2) + 720)/720 - [(n mod 10)=1]/5). - Hoang Xuan Thanh, Aug 20 2025

A001996 Number of partitions of n into parts 2, 3, 4, 5, 6, 7.

Original entry on oeis.org

1, 0, 1, 1, 2, 2, 4, 4, 6, 7, 10, 11, 16, 17, 23, 26, 33, 37, 47, 52, 64, 72, 86, 96, 115, 127, 149, 166, 192, 212, 245, 269, 307, 338, 382, 419, 472, 515, 576, 629, 699, 760, 843, 913, 1007, 1091, 1197, 1293, 1416, 1525, 1663, 1790, 1945, 2088, 2265, 2426
Offset: 0

Views

Author

Keywords

Comments

Also, Molien series for invariants of finite Coxeter group A_6. The Molien series for the finite Coxeter group of type A_k (k >= 1) has G.f. = 1/Prod_{i=2..k+1} (1-x^i). - N. J. A. Sloane, Jan 11 2016
Cayley tabulates the coefficients in the expansion of H = 1 / ((1 - x^2) * (1 - x^4) * ... * (1 - x^14)) with even indices 0, 2, ..., 142.

Examples

			G.f. = 1 + x^2 + x^3 + 2*x^4 + 2*x^5 + 4*x^6 + 4*x^7 + 6*x^8 + 7*x^9 + ...
G.f. = 1 + q^2 + q^6 + 2*q^8 + 2*q^10 + 4*q^12 + 4*q^14 + 6*q^16 + ...
		

References

  • A. Cayley, Calculation of the minimum N.G.F. of the binary seventhic, Collected Mathematical Papers. Vols. 1-13, Cambridge Univ. Press, London, 1889-1897, Vol. 10, p. 408-419.
  • J. E. Humphreys, Reflection Groups and Coxeter Groups, Cambridge, 1990. See Table 3.1, page 59.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Molien series for finite Coxeter groups A_1 through A_12 are A059841, A103221, A266755, A008667, A037145, A001996, and A266776-A266781.

Programs

  • Mathematica
    nn = 102; t = CoefficientList[Series[1/((1 - x^4)*(1 - x^6)*(1 - x^8)*(1 - x^10)*(1 - x^12)*(1 - x^14)), {x, 0, nn}], x]; t = Take[t, {1, nn, 2}]

Formula

G.f.: 1/((1-x^2)*(1-x^3)*(1-x^4)*(1-x^5)*(1-x^6)*(1-x^7)).
Euler transform of length 7 sequence [ 0, 1, 1, 1, 1, 1, 1]. - Michael Somos, Apr 23 2014

Extensions

More terms from James Sellers, Feb 09 2000

A037145 Expansion of 1/((1-x^2)(1-x^3)...(1-x^6)).

Original entry on oeis.org

1, 0, 1, 1, 2, 2, 4, 3, 6, 6, 9, 9, 14, 13, 19, 20, 26, 27, 36, 36, 47, 49, 60, 63, 78, 80, 97, 102, 120, 126, 149, 154, 180, 189, 216, 227, 260, 270, 307, 322, 361, 378, 424, 441, 492, 515, 568, 594, 656, 682, 750
Offset: 0

Views

Author

Keywords

Comments

Also, Molien series for invariants of finite Coxeter group A_5. The Molien series for the finite Coxeter group of type A_k (k >= 1) has G.f. = 1/Prod_{i=2..k+1} (1-x^i). - N. J. A. Sloane, Jan 11 2016

References

  • J. E. Humphreys, Reflection Groups and Coxeter Groups, Cambridge, 1990. See Table 3.1, page 59.

Crossrefs

Molien series for finite Coxeter groups A_1 through A_12 are A059841, A103221, A266755, A008667, A037145, A001996, and A266776-A266781.
Cf. A001402 (partial sums).

Programs

  • Mathematica
    CoefficientList[Series[1/Times@@Table[(1-x^n),{n,2,6}],{x,0,50}],x] (* Harvey P. Dale, Dec 25 2012 *)

A266776 Molien series for invariants of finite Coxeter group A_7.

Original entry on oeis.org

1, 0, 1, 1, 2, 2, 4, 4, 7, 7, 11, 12, 18, 19, 27, 30, 40, 44, 58, 64, 82, 91, 113, 126, 155, 171, 207, 230, 274, 303, 358, 395, 462, 509, 589, 649, 746, 818, 934, 1024, 1161, 1269, 1432, 1562, 1753, 1909, 2131, 2317, 2577, 2794, 3095, 3352, 3698, 3997, 4396, 4743, 5200, 5601, 6121, 6584, 7177, 7705, 8377, 8983, 9741, 10429, 11285, 12065
Offset: 0

Views

Author

N. J. A. Sloane, Jan 11 2016

Keywords

Comments

The Molien series for the finite Coxeter group of type A_k (k >= 1) has g.f. = 1/Product_{i=2..k+1} (1 - x^i).
Note that this is the root system A_k, not the alternating group Alt_k.

References

  • J. E. Humphreys, Reflection Groups and Coxeter Groups, Cambridge, 1990. See Table 3.1, page 59.

Crossrefs

Molien series for finite Coxeter groups A_1 through A_12 are A059841, A103221, A266755, A008667, A037145, A001996, and A266776-A266781.

Programs

  • Magma
    m:=40; R:=PowerSeriesRing(Integers(), m); Coefficients(R!(1/(&*[1-t^k: k in [2..8]]))); // G. C. Greubel, Oct 24 2018
  • Mathematica
    CoefficientList[Series[1/Product[1-t^k, {k,2,8}], {t, 0, 40}], t] (* G. C. Greubel, Oct 24 2018 *)
  • PARI
    t='t+O('t^40); Vec(1/prod(k=2,8, 1-t^k)) \\ G. C. Greubel, Oct 24 2018
    

Formula

G.f.: 1/((1-t^2)*(1-t^3)*(1-t^4)*(1-t^5)*(1-t^6)*(1-t^7)*(1-t^8)).

A266781 Molien series for invariants of finite Coxeter group A_12.

Original entry on oeis.org

1, 0, 1, 1, 2, 2, 4, 4, 7, 8, 12, 14, 21, 24, 33, 40, 53, 63, 83, 98, 126, 150, 188, 223, 278, 327, 401, 473, 573, 672, 809, 944, 1126, 1312, 1551, 1800, 2118, 2446, 2859, 3295, 3829, 4395, 5086, 5817, 6699, 7642, 8760, 9961, 11380, 12898, 14678, 16596, 18819, 21217, 23987, 26971, 30397, 34099, 38316, 42877, 48058, 53649, 59972, 66811
Offset: 0

Views

Author

N. J. A. Sloane, Jan 11 2016

Keywords

Comments

The Molien series for the finite Coxeter group of type A_k (k >= 1) has g.f. = 1/Product_{i=2..k+1} (1 - x^i).
Note that this is the root system A_k, not the alternating group Alt_k.

References

  • J. E. Humphreys, Reflection Groups and Coxeter Groups, Cambridge, 1990. See Table 3.1, page 59.

Crossrefs

Molien series for finite Coxeter groups A_1 through A_12 are A059841, A103221, A266755, A008667, A037145, A001996, and A266776-A266781.

Programs

  • Magma
    R:=PowerSeriesRing(Integers(), 70); Coefficients(R!( 1/(&*[1-x^j: j in [2..13]]) )); // G. C. Greubel, Feb 04 2020
    
  • Maple
    S:=series(1/mul(1-x^j, j=2..13)), x, 75):
    seq(coeff(S, x, j), j=0..70); # G. C. Greubel, Feb 04 2020
  • Mathematica
    CoefficientList[Series[1/Product[1-x^j, {j,2,13}], {x,0,70}], x] (* G. C. Greubel, Feb 04 2020 *)
    LinearRecurrence[{0,1,1,1,0,0,-1,-1,-1,-1,-1,0,0,-1,0,1,2,3,3,3,2,0,-1,-2,-3,-4,-4,-5,-4,-3,-1,1,3,5,7,7,6,5,3,2,-1,-4,-6,-7,-8,-7,-6,-4,-1,2,3,5,6,7,7,5,3,1,-1,-3,-4,-5,-4,-4,-3,-2,-1,0,2,3,3,3,2,1,0,-1,0,0,-1,-1,-1,-1,-1,0,0,1,1,1,0,-1},{1,0,1,1,2,2,4,4,7,8,12,14,21,24,33,40,53,63,83,98,126,150,188,223,278,327,401,473,573,672,809,944,1126,1312,1551,1800,2118,2446,2859,3295,3829,4395,5086,5817,6699,7642,8760,9961,11380,12898,14678,16596,18819,21217,23987,26971,30397,34099,38316,42877,48058,53649,59972,66811,74499,82813,92136,102204,113455,125613,139140,153754,169979,187481,206857,227767,250835,275713,303108,332617,365036,399950,438201,479372,524403,572813,625657,682451,744307,810735},80] (* Harvey P. Dale, Jul 01 2021 *)
  • PARI
    Vec( 1/prod(j=2,13, 1-x^j) +O('x^70) ) \\ G. C. Greubel, Feb 04 2020
    
  • Sage
    def A266781_list(prec):
        P. = PowerSeriesRing(ZZ, prec)
        return P( 1/prod(1-x^j for j in (2..13)) ).list()
    A266781_list(70) # G. C. Greubel, Feb 04 2020

Formula

G.f.: 1/((1-t^2)*(1-t^3)*(1-t^4)*(1-t^5)*(1-t^6)*(1-t^7)*(1-t^8)*(1-t^9)*(1-t^10)*(1-t^11)*(1-t^12)*(1-t^13)).

A370256 The number of ways in which n can be expressed as b^2 * c^3, with b and c >= 1.

Original entry on oeis.org

1, 0, 0, 1, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0
Offset: 1

Views

Author

Amiram Eldar, Feb 23 2024

Keywords

Comments

First differs from A075802 and A112526 at n = 64.
The least number k such that a(k) = n is A005179(n)^6.
The indices of records are the sixth powers of the highly composite numbers, A002182(n)^6.

Examples

			1 = 1^2 * 1^3, so a(1) = 1.
64 = 1^2 * 4^3 = 8^2 * 1^3, so a(64) = 2.
4096 = 64^2 * 1^3 = 8^2 * 4^3 = 1^2 * 16^3, so a(4096)= 3.
		

Crossrefs

Programs

  • Mathematica
    f[p_, e_] := Floor[(e + 2)/2] - Floor[(e + 2)/3]; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100]
  • PARI
    a(n) = vecprod(apply(x -> (x+2)\2 - (x+2)\3, factor(n)[, 2]));
    
  • PARI
    for(n=1, 100, print1(direuler(p=2, n, 1/((1 - X^2)*(1 - X^3)))[n], ", ")) \\ Vaclav Kotesovec, Feb 23 2024
    
  • Python
    from math import prod
    from sympy import factorint
    def A370256(n): return prod((e>>1)+1-(e+2)//3 for e in factorint(n).values()) # Chai Wah Wu, Apr 15 2025

Formula

Multiplicative with a(p^e) = A103221(e).
a(n) > 0 if and only if n is a powerful number (A001694).
a(A001694(n)) = A057523(n).
a(n^6) = A000005(n).
Sum_{k=1..n} a(k) ~ zeta(3/2) * sqrt(n) + zeta(2/3) * n^(1/3).
Dirichlet generating function: zeta(2*s)*zeta(3*s). - Vaclav Kotesovec, Feb 23 2024
Showing 1-10 of 36 results. Next