A103221 Number of partitions of n into parts 2 and 3.
1, 0, 1, 1, 1, 1, 2, 1, 2, 2, 2, 2, 3, 2, 3, 3, 3, 3, 4, 3, 4, 4, 4, 4, 5, 4, 5, 5, 5, 5, 6, 5, 6, 6, 6, 6, 7, 6, 7, 7, 7, 7, 8, 7, 8, 8, 8, 8, 9, 8, 9, 9, 9, 9, 10, 9, 10, 10, 10, 10, 11, 10, 11, 11, 11, 11, 12, 11, 12, 12, 12, 12, 13, 12, 13, 13, 13, 13, 14, 13, 14, 14, 14, 14, 15, 14, 15, 15
Offset: 0
Examples
For n=8, a(n)=2 since there are two partitions of 16 into 3 positive parts x, y, and z such that x >= y and y=z, namely, 16 = 8+4+4 and 16 = 6+5+5. - _Dennis P. Walsh_, Apr 25 2013 G.f. = 1 + x^2 + x^3 + x^4 + x^5 + 2*x^6 + x^7 + 2*x^8 + 2*x^9 + 2*x^10 + 2*x^11 + ...
References
- T. M. Apostol, Modular Functions and Dirichlet Series in Number Theory, Springer-Verlag, 1990, page 119.
- Avner Ash and Robert Gross, Summing it up, Princeton University Press, 2016, p. 178.
- D. J. Benson, Polynomial Invariants of Finite Groups, Cambridge, 1993, p. 100.
- E. Freitag, Siegelsche Modulfunktionen, Springer-Verlag, Berlin, 1983; p. 141, Th. 1.1.
- R. C. Gunning, Lectures on Modular Forms. Princeton Univ. Press, Princeton, NJ, 1962.
- J. E. Humphreys, Reflection Groups and Coxeter Groups, Cambridge, 1990. See Table 3.1, page 59.
- J.-M. Kantor, Ou en sont les mathématiques, La formule de Molien-Weyl, SMF, Vuibert, p. 79
- S. Mukai, An Introduction to Invariants and Moduli, Cambridge, 2003; see p. 26. - N. J. A. Sloane, Aug 28 2010.
Links
- Seiichi Manyama, Table of n, a(n) for n = 0..10000
- Max A. Alekseyev and Allan Bickle, Forbidden Subgraphs of Single Graphs, (2024). See p. 5.
- Andrew M. Baxter and Ron Umble, Periodic Orbits of Billiards on an Equilateral Triangle, Amer. Math. Monthly, 115 (No. 6, 2008), 479-491.
- Ansgar Freyer, Monika Ludwig, and Martin Rubey, Unimodular Valuations beyond Ehrhart, arXiv:2407.07691 [math.MG], 2024. See p. 8.
- Jun-Ichi Igusa, On Siegel modular forms of genus 2 (II), Amer. J. Math., 86 (1964), 392-412, esp. p. 402.
- Mohammed L. Nadji, Moussa Ahmia, Daniel F. Checa, and José L. Ramírez, Arndt Compositions with Restricted Parts, Palindromes, and Colored Variants, J. Int. Seq. (2025) Vol. 28, Issue 3, Article 25.3.6. See p. 15.
- Luc Rousseau, a(n) in an hexagonal tiling
- Tetsuji Shioda, On the graded ring of invariants of binary octavics, Amer. J. Math. 89, 1022-1046, 1967.
- William A. Stein, Dimensions of the spaces S_k(Gamma_0(N))
- William A. Stein, Dimensions of the spaces S_k^{new}(Gamma_0(N))
- William A. Stein, The modular forms database
- Index entries for Molien series
- Index entries for two-way infinite sequences
- Index entries for linear recurrences with constant coefficients, signature (0,1,1,0,-1).
Crossrefs
Programs
-
Magma
[Floor((n+2)/2)-Floor((n+2)/3): n in [0..100]]; // Vincenzo Librandi, Sep 18 2016
-
Maple
A103221:=n->floor((n+2)/2)-floor((n+2)/3): # Andrew Baxter, Jun 06 2008
-
Mathematica
a=b=c=d=0;Table[e=a+b-d+1;a=b;b=c;c=d;d=e,{n,100}] (* Vladimir Joseph Stephan Orlovsky, Feb 26 2011 *) LinearRecurrence[{0, 1, 1, 0, -1},{1, 0, 1, 1, 1},88] (* Ray Chandler, Sep 23 2015 *) a[ n_] := With[{m = Max[-5 - n, n]}, (-1)^Boole[n < 0] SeriesCoefficient[ 1 / ((1 - x^2) (1 - x^3)), {x, 0, m}]]; (* Michael Somos, Jun 02 2019 *)
-
PARI
{a(n) = if( n<-4, -a(-5-n), polcoeff( 1 / ((1 - x^2) * (1 - x^3)) + x * O(x^n), n))};
-
PARI
a(n)=n+=2; n\2 - n\3 \\ Charles R Greathouse IV, Jul 31 2017
-
Python
def A103221(n): return (n>>1)+1-(n+2)//3 # Chai Wah Wu, Apr 15 2025
-
Sage
def a(n) : return( len( CuspForms( Gamma0( 1), 2*n + 12, prec=1). basis())); # Michael Somos, May 29 2013
Formula
Euler transform of finite sequence [0, 1, 1] with offset 1, which is A171386.
a(n) = a(n-6) + 1 = a(n-2) + a(n-3) - a(n-5). - Henry Bottomley, Sep 02 2000
G.f.: 1/((1-x^2)*(1-x^3)).
a(n) = floor((n+2)/2) - floor((n+2)/3). - Andrew Baxter, Jun 06 2008
For odd n, a(n)=floor((n+3)/6). For even n, a(n)=floor((n+6)/6). - Dennis P. Walsh, Apr 25 2013
a(n) = floor(n/6)+1 unless n == 1 (mod 6); if n == 1 (mod 6), a(n) = floor(n/6). - Bob Selcoe, Sep 27 2014
a(n)-a(n-2) = A079978(n). - R. J. Mathar, Jun 23 2021
E.g.f.: (3*(4 + x)*cosh(x) + exp(-x/2)*(6*cos(sqrt(3)*x/2) - 2*sqrt(3)*sin(sqrt(3)*x/2)) + 3*(1 + x)*sinh(x))/18. - Stefano Spezia, Mar 05 2023
Extensions
Name changed by Wolfdieter Lang, Sep 16 2016
Comments