cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A266781 Molien series for invariants of finite Coxeter group A_12.

Original entry on oeis.org

1, 0, 1, 1, 2, 2, 4, 4, 7, 8, 12, 14, 21, 24, 33, 40, 53, 63, 83, 98, 126, 150, 188, 223, 278, 327, 401, 473, 573, 672, 809, 944, 1126, 1312, 1551, 1800, 2118, 2446, 2859, 3295, 3829, 4395, 5086, 5817, 6699, 7642, 8760, 9961, 11380, 12898, 14678, 16596, 18819, 21217, 23987, 26971, 30397, 34099, 38316, 42877, 48058, 53649, 59972, 66811
Offset: 0

Views

Author

N. J. A. Sloane, Jan 11 2016

Keywords

Comments

The Molien series for the finite Coxeter group of type A_k (k >= 1) has g.f. = 1/Product_{i=2..k+1} (1 - x^i).
Note that this is the root system A_k, not the alternating group Alt_k.

References

  • J. E. Humphreys, Reflection Groups and Coxeter Groups, Cambridge, 1990. See Table 3.1, page 59.

Crossrefs

Molien series for finite Coxeter groups A_1 through A_12 are A059841, A103221, A266755, A008667, A037145, A001996, and A266776-A266781.

Programs

  • Magma
    R:=PowerSeriesRing(Integers(), 70); Coefficients(R!( 1/(&*[1-x^j: j in [2..13]]) )); // G. C. Greubel, Feb 04 2020
    
  • Maple
    S:=series(1/mul(1-x^j, j=2..13)), x, 75):
    seq(coeff(S, x, j), j=0..70); # G. C. Greubel, Feb 04 2020
  • Mathematica
    CoefficientList[Series[1/Product[1-x^j, {j,2,13}], {x,0,70}], x] (* G. C. Greubel, Feb 04 2020 *)
    LinearRecurrence[{0,1,1,1,0,0,-1,-1,-1,-1,-1,0,0,-1,0,1,2,3,3,3,2,0,-1,-2,-3,-4,-4,-5,-4,-3,-1,1,3,5,7,7,6,5,3,2,-1,-4,-6,-7,-8,-7,-6,-4,-1,2,3,5,6,7,7,5,3,1,-1,-3,-4,-5,-4,-4,-3,-2,-1,0,2,3,3,3,2,1,0,-1,0,0,-1,-1,-1,-1,-1,0,0,1,1,1,0,-1},{1,0,1,1,2,2,4,4,7,8,12,14,21,24,33,40,53,63,83,98,126,150,188,223,278,327,401,473,573,672,809,944,1126,1312,1551,1800,2118,2446,2859,3295,3829,4395,5086,5817,6699,7642,8760,9961,11380,12898,14678,16596,18819,21217,23987,26971,30397,34099,38316,42877,48058,53649,59972,66811,74499,82813,92136,102204,113455,125613,139140,153754,169979,187481,206857,227767,250835,275713,303108,332617,365036,399950,438201,479372,524403,572813,625657,682451,744307,810735},80] (* Harvey P. Dale, Jul 01 2021 *)
  • PARI
    Vec( 1/prod(j=2,13, 1-x^j) +O('x^70) ) \\ G. C. Greubel, Feb 04 2020
    
  • Sage
    def A266781_list(prec):
        P. = PowerSeriesRing(ZZ, prec)
        return P( 1/prod(1-x^j for j in (2..13)) ).list()
    A266781_list(70) # G. C. Greubel, Feb 04 2020

Formula

G.f.: 1/((1-t^2)*(1-t^3)*(1-t^4)*(1-t^5)*(1-t^6)*(1-t^7)*(1-t^8)*(1-t^9)*(1-t^10)*(1-t^11)*(1-t^12)*(1-t^13)).