cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A266821 Expansion of Product_{k>=1} (1 + 3*x^k) / (1 - x^k).

Original entry on oeis.org

1, 4, 8, 24, 44, 88, 176, 312, 544, 924, 1584, 2552, 4136, 6488, 10128, 15632, 23748, 35640, 53080, 78136, 114024, 165552, 237744, 339544, 481248, 678236, 949008, 1321840, 1830376, 2521688, 3456672, 4717208, 6406680, 8666448, 11672464, 15660528, 20934868
Offset: 0

Views

Author

Vaclav Kotesovec, Jan 04 2016

Keywords

Comments

Convolution of A000041 and A032308.
In general, for m > 0, if g.f. = Product_{k>=1} ((1 + m*x^k) / (1 - x^k)) then a(n) ~ sqrt(c) * exp(sqrt(2*c*n)) / (4*Pi*sqrt(m+1)*n), where c = 2*Pi^2/3 + log(m)^2 + 2*polylog(2, -1/m).

Crossrefs

Column k=4 of A321884.

Programs

  • Maple
    b:= proc(n, i) option remember; `if`(n=0, 1, `if`(i<1, 0, add(
          (t-> b(t, min(t, i-1)))(n-i*j), j=1..n/i)*4 +b(n, i-1)))
        end:
    a:= n-> b(n$2):
    seq(a(n), n=0..44);  # Alois P. Heinz, Aug 28 2019
  • Mathematica
    nmax = 40; CoefficientList[Series[Product[(1+3*x^k) / (1-x^k), {k, 1, nmax}], {x, 0, nmax}], x]
  • PARI
    { my(n=40); Vec(prod(k=1, n, 4/(1-x^k) - 3 + O(x*x^n))) } \\ Andrew Howroyd, Dec 22 2017

Formula

a(n) ~ sqrt(c) * exp(sqrt(2*c*n)) / (8*Pi*n), where c = 2*Pi^2/3 + log(3)^2 + 2*polylog(2, -1/3) = 7.16861897522987077909937377164783326088308015803... .