cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A266927 Perfect powers of the form x^2 + y^2 where x and y are positive integers.

Original entry on oeis.org

8, 25, 32, 100, 125, 128, 169, 225, 289, 400, 512, 625, 676, 841, 900, 1000, 1156, 1225, 1369, 1521, 1600, 1681, 2025, 2048, 2197, 2500, 2601, 2704, 2809, 3025, 3125, 3364, 3600, 3721, 4225, 4624, 4900, 4913, 5329, 5476, 5625, 5832, 6084, 6400, 6724, 7225, 7569
Offset: 1

Views

Author

Altug Alkan, Jan 06 2016

Keywords

Comments

Intersection of A000404 and A001597.
A134422 is a subsequence.
Obviously, this sequence contains all numbers of the form 2^(2*n+1), for n > 0.
Motivation for this sequence is the equation m^k = x^2 + y^2 where m,x,y > 0, k >= 2. - Altug Alkan, Jan 11 2016

Examples

			25 is a term because 25 = 5^2 = 3^2 + 4^2.
32 is a term because 32 = 2^5 = 4^2 + 4^2.
125 is a term because 125 = 5^3 = 10^2 + 5^2.
169 is a term because 169 = 13^2 = 5^2 + 12^2.
		

Crossrefs

Programs

  • Maple
    N:= 10000: # to get all terms <= N
    g:= proc(k)
        local F,F1,F2,F3,f;
        F:= ifactors(k)[2];
        F2,F:= selectremove(f->f[1]=2,F);
        F1,F3:= selectremove(f -> f[1] mod 4 = 1, F);
        if F1 <> [] then
           if hastype(map(f -> f[2],F3),odd) then
              seq(k^j, j=2..floor(log[k](N)),2)
           else seq(k^j, j=2..floor(log[k](N)))
           fi
        elif F2 = [] or F2[1][2]::even or hastype(map(f -> f[2],F3),odd) then NULL
        else seq(k^j, j=3..floor(log[k](N)),2)
        fi
    end proc:
    sort(convert(map(g,{$2..floor(sqrt(N))}),list)); # Robert Israel, Jan 11 2016
  • Mathematica
    lim = 7600; fQ[n_] := n == 1 || GCD @@ FactorInteger[n][[All, 2]] > 1; Select[Union@ Flatten@ Table[a^2 + b^2, {a, Floor[Sqrt[lim - 1]]}, {b, a, Floor[Sqrt[lim - a^2]]}], fQ] (* Michael De Vlieger, Jan 06 2016, after N. J. A. Sloane and J. H. Conway at A000404 and Ant King at A001597 *)
  • PARI
    is(n) = {for( i=1, #n=factor(n)~%4, n[1, i]==3 && n[2, i]%2 && return); n && ( vecmin(n[1, ])==1 || (n[1, 1]==2 && n[2, 1]%2))}
    for(n=1, 1e4, if((ispower(n) || n==1) && is(n), print1(n, ", ")));