A266927 Perfect powers of the form x^2 + y^2 where x and y are positive integers.
8, 25, 32, 100, 125, 128, 169, 225, 289, 400, 512, 625, 676, 841, 900, 1000, 1156, 1225, 1369, 1521, 1600, 1681, 2025, 2048, 2197, 2500, 2601, 2704, 2809, 3025, 3125, 3364, 3600, 3721, 4225, 4624, 4900, 4913, 5329, 5476, 5625, 5832, 6084, 6400, 6724, 7225, 7569
Offset: 1
Keywords
Examples
25 is a term because 25 = 5^2 = 3^2 + 4^2. 32 is a term because 32 = 2^5 = 4^2 + 4^2. 125 is a term because 125 = 5^3 = 10^2 + 5^2. 169 is a term because 169 = 13^2 = 5^2 + 12^2.
Links
- Robert Israel, Table of n, a(n) for n = 1..10000
Programs
-
Maple
N:= 10000: # to get all terms <= N g:= proc(k) local F,F1,F2,F3,f; F:= ifactors(k)[2]; F2,F:= selectremove(f->f[1]=2,F); F1,F3:= selectremove(f -> f[1] mod 4 = 1, F); if F1 <> [] then if hastype(map(f -> f[2],F3),odd) then seq(k^j, j=2..floor(log[k](N)),2) else seq(k^j, j=2..floor(log[k](N))) fi elif F2 = [] or F2[1][2]::even or hastype(map(f -> f[2],F3),odd) then NULL else seq(k^j, j=3..floor(log[k](N)),2) fi end proc: sort(convert(map(g,{$2..floor(sqrt(N))}),list)); # Robert Israel, Jan 11 2016
-
Mathematica
lim = 7600; fQ[n_] := n == 1 || GCD @@ FactorInteger[n][[All, 2]] > 1; Select[Union@ Flatten@ Table[a^2 + b^2, {a, Floor[Sqrt[lim - 1]]}, {b, a, Floor[Sqrt[lim - a^2]]}], fQ] (* Michael De Vlieger, Jan 06 2016, after N. J. A. Sloane and J. H. Conway at A000404 and Ant King at A001597 *)
-
PARI
is(n) = {for( i=1, #n=factor(n)~%4, n[1, i]==3 && n[2, i]%2 && return); n && ( vecmin(n[1, ])==1 || (n[1, 1]==2 && n[2, 1]%2))} for(n=1, 1e4, if((ispower(n) || n==1) && is(n), print1(n, ", ")));
Comments