cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A266941 Expansion of Product_{k>=1} 1 / (1 - k*x^k)^k.

Original entry on oeis.org

1, 1, 5, 14, 42, 103, 289, 690, 1771, 4206, 10142, 23449, 54786, 123528, 279480, 619206, 1366405, 2969071, 6425534, 13727775, 29187555, 61439660, 128620370, 267044222, 551527679, 1130806020, 2306746335, 4676096006, 9432394144, 18920266428, 37776372312
Offset: 0

Views

Author

Vaclav Kotesovec, Jan 06 2016

Keywords

Comments

This sequence is obtained from the generalized Euler transform in A266964 by taking f(n) = n, g(n) = n. - Seiichi Manyama, Nov 18 2017

Crossrefs

Programs

  • Mathematica
    nmax = 40; CoefficientList[Series[Product[1/(1-k*x^k)^k, {k, 1, nmax}], {x, 0, nmax}], x]
    nmax = 40; s = 1 - x; Do[s *= Sum[Binomial[k, j]*(-1)^j*k^j*x^(j*k), {j, 0, nmax/k}]; s = Expand[s]; s = Take[s, Min[nmax + 1, Exponent[s, x] + 1, Length[s]]];, {k, 2, nmax}]; CoefficientList[Series[1/s, {x, 0, nmax}], x] (* Vaclav Kotesovec, Aug 27 2018 *)

Formula

From Vaclav Kotesovec, Jan 08 2016: (Start)
a(n) ~ c * n^2 * 3^(n/3), where
c = 3278974684037157122864203.021982619109776972432419491714093... if mod(n,3)=0
c = 3278974684037157122864202.999526122508793149896683112820555... if mod(n,3)=1
c = 3278974684037157122864203.001231135511323719311281438384212... if mod(n,3)=2
(End)
In closed form, a(n) ~ (Product_{k>=4}((1 - k/3^(k/3))^(-k)) / ((1 - 2/3^(2/3))^2 * (1 - 1/3^(1/3))) + Product_{k>=4}((1 - (-1)^(2*k/3)*k/3^(k/3))^(-k)) / ((-1)^(2*n/3) * ((1 + 2*(-1)^(1/3)/3^(2/3))^2 * (1 - (-1)^(2/3)/3^(1/3)))) + Product_{k>=4}((1 - (-1)^(4*k/3)*k/3^(k/3))^(-k)) / ((-1)^(4*n/3) * ((1 + (-1/3)^(1/3)) * (1 - 2*(-1/3)^(2/3))^2))) * 3^(n/3) * n^2 / 54. - Vaclav Kotesovec, Apr 24 2017
a(0) = 1 and a(n) = (1/n) * Sum_{k=1..n} (Sum_{d|k} d^(2+k/d)) * a(n-k) for n > 0. - Seiichi Manyama, Nov 02 2017