cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 14 results. Next

A266964 Expansion of Product_{k>=1} (1 - k*x^k)^k.

Original entry on oeis.org

1, -1, -4, -5, -3, 23, 44, 104, 70, -93, -465, -1155, -1882, -1904, 804, 6195, 18755, 33296, 47327, 35198, -28493, -176199, -453792, -805453, -1126396, -1028297, -18994, 2946491, 8248080, 16444480, 25436984, 30736635, 22263981, -16098311, -102681575
Offset: 0

Views

Author

Vaclav Kotesovec, Jan 07 2016

Keywords

Crossrefs

Programs

  • Magma
    m:=50; R:=PowerSeriesRing(Rationals(), m); Coefficients(R! ( (&*[(1-k*q^k)^k: k in [1..m]]) )); // G. C. Greubel, Oct 30 2018
  • Maple
    seq(coeff(series(mul((1-k*x^k)^k,k=1..n),x,n+1), x, n), n = 0 .. 35); # Muniru A Asiru, Oct 31 2018
  • Mathematica
    nmax = 40; CoefficientList[Series[Product[(1-k*x^k)^k, {k, 1, nmax}], {x, 0, nmax}], x]
    (* More efficient program: *) nmax = 40; s = 1-x; Do[s*=Sum[Binomial[k, j]*(-1)^j*k^j*x^(j*k), {j, 0, nmax/k}]; s = Expand[s]; s = Take[s, Min[nmax + 1, Exponent[s, x] + 1, Length[s]]];, {k, 2, nmax}]; Take[CoefficientList[s, x], nmax]
  • PARI
    N=66; x='x+O('x^N); Vec(prod(k=1, N, (1-k*x^k)^k)) \\ Seiichi Manyama, Nov 18 2017
    
  • Ruby
    def s(f_ary, g_ary, n)
      s = 0
      (1..n).each{|i| s += i * f_ary[i] * g_ary[i] ** (n / i) if n % i == 0}
      s
    end
    def A(f_ary, g_ary, n)
      ary = [1]
      a = [0] + (1..n).map{|i| s(f_ary, g_ary, i)}
      (1..n).each{|i| ary << (1..i).inject(0){|s, j| s + a[j] * ary[-j]} / i}
      ary
    end
    def A266964(n)
      A((0..n).map{|i| -i}, (0..n).to_a, n)
    end
    p A266964(50) # Seiichi Manyama, Nov 18 2017
    

Formula

a(0) = 1 and a(n) = -(1/n) * Sum_{k=1..n} (Sum_{d|k} d^(2+k/d)) * a(n-k) for n > 0. - Seiichi Manyama, Nov 02 2017
From Seiichi Manyama, Nov 14 2017: (Start)
A generalized Euler transform.
Suppose given two sequences f(n) and g(n), n>0, we define a new sequence a(n), n>=0, by Product_{n>0} (1 - g(n)*x^n)^(-f(n)) = a(0) + a(1)*x + a(2)*x^2 + ...
Since Product_{n>0} (1 - g(n)*x^n)^(-f(n)) = exp(Sum_{n>0} (Sum_{d|n} d*f(d)*g(d)^(n/d))*x^n/n), we see that a(n) is given explicitly by a(n) = (1/n) * Sum_{k=1..n} b(k)*a(n-k) where b(n) = Sum_{d|n} d*f(d)*g(d)^(n/d).
Examples:
1. If we set g(n) = 1, we get the usual Euler transform.
2. If we set f(n) = -h(n) and g(n) = -1, we get the weighout transform (cf. A026007).
3. If we set f(n) = -n and g(n) = n, we get this sequence.
(End)

A297328 Square array A(n,k), n >= 0, k >= 0, read by antidiagonals, where column k is the expansion of Product_{j>=1} 1/(1 - j*x^j)^k.

Original entry on oeis.org

1, 1, 0, 1, 1, 0, 1, 2, 3, 0, 1, 3, 7, 6, 0, 1, 4, 12, 18, 14, 0, 1, 5, 18, 37, 49, 25, 0, 1, 6, 25, 64, 114, 114, 56, 0, 1, 7, 33, 100, 219, 312, 282, 97, 0, 1, 8, 42, 146, 375, 676, 855, 624, 198, 0, 1, 9, 52, 203, 594, 1276, 2030, 2178, 1422, 354, 0, 1, 10, 63, 272, 889, 2196, 4155, 5736, 5496, 3058, 672, 0
Offset: 0

Views

Author

Ilya Gutkovskiy, Dec 28 2017

Keywords

Examples

			G.f. of column k: A_k(x) = 1 + k*x + (1/2)*k*(k + 5)*x^2 + (1/6)*k*(k^2 + 15*k + 20)*x^3 + (1/24)*k*(k^3 + 30*k^2 + 155*k + 150)*x^4 + (1/120)*k*(k^4 + 50*k^3 + 575*k^2 + 1750*k + 624)*x^5 + ...
Square array begins:
  1,   1,    1,    1,    1,     1,  ...
  0,   1,    2,    3,    4,     5,  ...
  0,   3,    7,   12,   18,    25,  ...
  0,   6,   18,   37,   64,   100,  ...
  0,  14,   49,  114,  219,   375,  ...
  0,  25,  114,  312,  676,  1276,  ...
		

Crossrefs

Programs

  • Mathematica
    Table[Function[k, SeriesCoefficient[Product[1/(1 - i x^i)^k, {i, 1, n}], {x, 0, n}]][j - n], {j, 0, 11}, {n, 0, j}] // Flatten
  • PARI
    first(n, k) = my(res = matrix(n, k)); for(u=1, k, my(col = Vec(prod(j=1, n, 1/(1 - j*x^j)^(u-1)) + O(x^n))); for(v=1, n, res[v, u] = col[v])); res \\ Iain Fox, Dec 28 2017

Formula

G.f. of column k: Product_{j>=1} 1/(1 - j*x^j)^k.
A(0,k) = 1; A(n,k) = (k/n) * Sum_{j=1..n} A078308(j) * A(n-j,k). - Seiichi Manyama, Aug 16 2023

A285047 Expansion of Product_{k>=1} 1/(1-x^(k^2))^k.

Original entry on oeis.org

1, 1, 1, 1, 3, 3, 3, 3, 6, 9, 9, 9, 13, 19, 19, 19, 28, 37, 43, 43, 57, 69, 81, 81, 100, 132, 150, 160, 184, 236, 260, 280, 319, 391, 460, 490, 565, 657, 771, 811, 922, 1084, 1243, 1363, 1510, 1781, 1985, 2185, 2388, 2775, 3159, 3439, 3832, 4335, 4963, 5323
Offset: 0

Views

Author

Vaclav Kotesovec, Apr 15 2017

Keywords

Crossrefs

Programs

  • Mathematica
    nmax=100; CoefficientList[Series[Product[1/(1-x^(k^2))^k, {k,1,nmax}], {x,0,nmax}], x]

Formula

log(a(n)) ~ Pi*sqrt(n/3).

A266971 Expansion of Product_{k>=1} 1 / (1 + k*x^k)^k.

Original entry on oeis.org

1, -1, -3, -6, 2, 9, 41, 46, 91, -110, -210, -713, -574, -1152, 792, 1066, 9317, 8553, 21302, 745, 8051, -82940, -76750, -276022, -82369, -404100, 381095, -38110, 2427272, 1126260, 6527840, 198507, 9754305, -14320206, 2879362, -60271740, -5154261, -143468194
Offset: 0

Views

Author

Vaclav Kotesovec, Jan 07 2016

Keywords

Comments

For n > 36 is a(n) > 0 if n is even and a(n) < 0 if n is odd.
This sequence is obtained from the generalized Euler transform in A266964 by taking f(n) = n, g(n) = -n. - Seiichi Manyama, Nov 18 2017

Crossrefs

Programs

  • Mathematica
    nmax=50; CoefficientList[Series[Product[1/(1+k*x^k)^k, {k, 1, nmax}], {x, 0, nmax}], x]
  • PARI
    N=66; x='x+O('x^N); Vec(1/prod(k=1, N, (1+k*x^k)^k)) \\ Seiichi Manyama, Nov 18 2017
    
  • Ruby
    def s(f_ary, g_ary, n)
      s = 0
      (1..n).each{|i| s += i * f_ary[i] * g_ary[i] ** (n / i) if n % i == 0}
      s
    end
    def A(f_ary, g_ary, n)
      ary = [1]
      a = [0] + (1..n).map{|i| s(f_ary, g_ary, i)}
      (1..n).each{|i| ary << (1..i).inject(0){|s, j| s + a[j] * ary[-j]} / i}
      ary
    end
    def A266971(n)
      A((0..n).to_a, (0..n).map{|i| -i}, n)
    end
    p A266971(50) # Seiichi Manyama, Nov 18 2017

Formula

a(n) ~ c * (-1)^n * n^2 * 3^(n/3), where
c = 50.5838262902886367070621... if mod(n,3)=0,
c = 50.5827771239052189170531... if mod(n,3)=1,
c = 50.5832885870455104598393... if mod(n,3)=2.
a(0) = 1 and a(n) = (1/n) * Sum_{k=1..n} b(k)*a(n-k) where b(n) = Sum_{d|n} d^2*(-d)^(n/d). - Seiichi Manyama, Nov 18 2017

A285241 Expansion of Product_{k>=1} 1/(1 - k*x^k)^(k^2).

Original entry on oeis.org

1, 1, 9, 36, 140, 481, 1774, 5925, 20076, 64980, 208486, 652058, 2017023, 6117878, 18347256, 54222195, 158463794, 457570786, 1307951914, 3700153918, 10371860026, 28810051738, 79359812567, 216834266612, 587961817595, 1582612248239, 4230325722508
Offset: 0

Views

Author

Vaclav Kotesovec, Apr 15 2017

Keywords

Crossrefs

Programs

  • Mathematica
    nmax = 40; CoefficientList[Series[Product[1/(1-k*x^k)^(k^2), {k,1,nmax}], {x,0,nmax}], x]

Formula

a(n) ~ c * n^8 * 3^(n/3), where
if mod(n,3) = 0 then c = 3435237242728465092737309192093188152686332293\
03276380306112638865540880372901642880694943679256417087889777743957063\
209444405157397505005623042846150296486667845382334521513094023.8560142\
40331306860864399770618296475558098172993864629247911801570500913143642\
65158886200452165335605783203726486071335...
if mod(n,3) = 1 then c = 3435237242728465092737309192093188152686332293\
03276380306112638865540880372901642880694943679256417087889777743957063\
209444405157397505005623042846150296486667845382334521513094023.8560112\
77299895134841028015999951571187798033179513268954711586617617334007687\
07198348808962592621276659532114355538024...
if mod(n,3) = 2 then c = 3435237242728465092737309192093188152686332293\
03276380306112638865540880372901642880694943679256417087889777743957063\
209444405157397505005623042846150296486667845382334521513094023.8560117\
00278534968233203470801053870003971422069097966617636511346003845666735\
79293861331368526745743422198017148868212...
In closed form, a(n) ~ -(27*Product_{k>=4}((1 - k / 3^(k/3))^(-k^2)) / (13 + 128*3^(1/3) - 95*3^(2/3)) + 243*Product_{k>=4}((1 + (-1)^(1 + 2*k/3) * k / 3^(k/3))^(-k^2)) / ((-1)^(2*n/3) * ((3 + 2*(-3)^(1/3))^4 * (-3 + (-3)^(2/3)))) + (-1)^(1 - 4*n/3) * Product_{k>=4}((1 + (-1)^(1 + 4*k/3) * k / 3^(k/3))^(-k^2)) / ((1 + (-1/3)^(1/3)) * (1 - 2*(-1/3)^(2/3))^4)) / 793618560 * n^8 * 3^(n/3).

A298985 a(n) = [x^n] Product_{k>=1} 1/(1 - n*x^k)^k.

Original entry on oeis.org

1, 1, 8, 54, 496, 5400, 73728, 1204322, 23167808, 512093178, 12781430600, 355128859129, 10863077554224, 362572265689777, 13107541496092960, 510105773344747725, 21258690342206888192, 944467894258279964254, 44555341678790400325512, 2224158766859058600584834, 117123916650423288611260400
Offset: 0

Views

Author

Ilya Gutkovskiy, Jan 31 2018

Keywords

Crossrefs

Programs

  • Maple
    b:= proc(n, i, k) option remember;   `if`(n=0, 1, `if`(i<1, 0,
          add(binomial(i+j-1, j)*b(n-i*j, i-1, k)*k^j, j=0..n/i)))
        end:
    a:= n-> b(n$3):
    seq(a(n), n=0..30);  # Alois P. Heinz, Sep 23 2018
  • Mathematica
    Table[SeriesCoefficient[Product[1/(1 - n x^k)^k, {k, 1, n}], {x, 0, n}], {n, 0, 20}]

Formula

a(n) ~ n^n. - Vaclav Kotesovec, Feb 02 2018

A266942 Expansion of Product_{k>=1} ((1 + k*x^k) / (1 - k*x^k))^k.

Original entry on oeis.org

1, 2, 10, 36, 118, 376, 1156, 3392, 9734, 27230, 74256, 198724, 522292, 1348968, 3432824, 8613856, 21330374, 52190692, 126262774, 302222388, 716247128, 1681575344, 3912919956, 9028823856, 20667406276, 46949343786, 105881451120, 237135574392, 527580701456
Offset: 0

Views

Author

Vaclav Kotesovec, Jan 06 2016

Keywords

Crossrefs

Programs

  • Mathematica
    nmax = 40; CoefficientList[Series[Product[((1+k*x^k)/(1-k*x^k))^k, {k, 1, nmax}], {x, 0, nmax}], x]

Formula

From Vaclav Kotesovec, Jan 08 2016: (Start)
a(n) ~ c * n^2 * 3^(n/3), where
c = 1122422673446372185062691708933615715850.583956830118389527... if mod(n,3)=0
c = 1122422673446372185062691708933615715849.484130848291097773... if mod(n,3)=1
c = 1122422673446372185062691708933615715849.782119252925454917... if mod(n,3)=2
(End)

A285243 Expansion of Product_{k>=1} 1/(1 - k*x^(k^2))^k.

Original entry on oeis.org

1, 1, 1, 1, 5, 5, 5, 5, 17, 26, 26, 26, 58, 94, 94, 94, 190, 298, 352, 352, 608, 896, 1112, 1112, 1752, 2641, 3289, 3559, 5095, 7499, 9227, 10307, 14051, 20111, 25520, 28760, 38843, 53467, 68191, 76831, 102187, 138283, 175543, 202813, 263905, 355220, 445364
Offset: 0

Views

Author

Vaclav Kotesovec, Apr 15 2017

Keywords

Crossrefs

Programs

  • Mathematica
    nmax = 100; CoefficientList[Series[Product[1/(1 - k*x^(k^2))^k, {k,1,nmax}], {x,0,nmax}], x]

Formula

a(n) ~ c * n * 2^(n/4), where
c = 37.4093119651465404809069752821426852731608123... if mod(n,4)=0
c = 37.6275180026872367633343656570058911570800766... if mod(n,4)=1
c = 37.7650387085085950514850376086515488784106690... if mod(n,4)=2
c = 37.4702467422193571732026074780460498930830447... if mod(n,4)=3

A285674 Expansion of Product_{k>=1} 1/(1 - k^2*x^k)^k.

Original entry on oeis.org

1, 1, 9, 36, 148, 489, 1959, 6326, 22741, 74072, 246436, 781189, 2523042, 7773342, 24200874, 73439472, 222247101, 660405663, 1958564056, 5715567301, 16623600991, 47780474694, 136623175876, 386983158080, 1090779014163, 3048348195528, 8478106666045
Offset: 0

Views

Author

Vaclav Kotesovec, Apr 24 2017

Keywords

Crossrefs

Programs

  • Mathematica
    nmax=40; CoefficientList[Series[Product[1/(1-k^2*x^k)^k, {k, 1, nmax}], {x, 0, nmax}], x]

Formula

a(n) ~ c * 3^(2*n/3) * n^2, where
c = 76631915822.1860553820452485980060616094557062528483009... if mod(n,3)=0
c = 76631915822.1819974623120987784506295282600132985390786... if mod(n,3)=1
c = 76631915822.1825610530012010285873110459423711856434442... if mod(n,3)=2
In closed form, a(n) ~ (Product_{k>=4}((1 - k^2/3^(2*k/3))^(-k)) / ((1 - 1/3^(2/3)) * (1 - 4/3^(4/3))^2) + Product_{k>=4}((1 - (-1)^(2*k/3)*k^2/3^(2*k/3))^(-k)) / ((-1)^(2*n/3) * ((1 + 4/3*(-1/3)^(1/3))^2 * (1 - (-1/3)^(2/3)))) + Product_{k>=4}((1 - (-1)^(4*k/3)*k^2/3^(2*k/3))^(-k)) / ((-1)^(4*n/3) * ((1 + (-1)^(1/3)/3^(2/3)) * (1 - 4*(-1)^(2/3) / 3^(4/3))^2))) * 3^(2*n/3) * n^2 / 54.

A294585 Square array A(n,k), n >= 0, k >= 0, read by antidiagonals, where column k is the expansion of Product_{j>=1} 1/(1 - j^k*x^j)^(j^k).

Original entry on oeis.org

1, 1, 1, 1, 1, 2, 1, 1, 5, 3, 1, 1, 17, 14, 5, 1, 1, 65, 98, 42, 7, 1, 1, 257, 794, 514, 103, 11, 1, 1, 1025, 6818, 7194, 2435, 289, 15, 1, 1, 4097, 60074, 107170, 69475, 12752, 690, 22, 1, 1, 16385, 535538, 1649322, 2177411, 715277, 58849, 1771, 30
Offset: 0

Views

Author

Seiichi Manyama, Nov 03 2017

Keywords

Examples

			Square array begins:
   1,  1,   1,    1,      1, ...
   1,  1,   1,    1,      1, ...
   2,  5,  17,   65,    257, ...
   3, 14,  98,  794,   6818, ...
   5, 42, 514, 7194, 107170, ...
		

Crossrefs

Columns k=0..2 give A000041, A266941, A294586.
Rows n=0-1 give A000012.

Formula

A(0,k) = 1 and A(n,k) = (1/n) * Sum_{j=1..n} (Sum_{d|j} d^(k+1+k*j/d)) * A(n-j,k) for n > 0.
Showing 1-10 of 14 results. Next