A266956 Numbers m such that 9*m+7 is a square.
1, 2, 18, 21, 53, 58, 106, 113, 177, 186, 266, 277, 373, 386, 498, 513, 641, 658, 802, 821, 981, 1002, 1178, 1201, 1393, 1418, 1626, 1653, 1877, 1906, 2146, 2177, 2433, 2466, 2738, 2773, 3061, 3098, 3402, 3441, 3761, 3802, 4138, 4181, 4533, 4578, 4946, 4993, 5377, 5426
Offset: 1
Links
- Index entries for linear recurrences with constant coefficients, signature (1,2,-2,-1,1).
Crossrefs
Programs
-
Magma
[n: n in [0..6000] | IsSquare(9*n+7)];
-
Magma
[(18*(n-1)*n-7*(2*n-1)*(-1)^n+1)/8: n in [1..50]];
-
Mathematica
Select[Range[0, 6000], IntegerQ[Sqrt[9 # + 7]] &] Table[(18 (n - 1) n - 7 (2 n - 1) (-1)^n + 1)/8, {n, 1, 50}]
-
PARI
for(n=0, 6000, if(issquare(9*n+7), print1(n, ", ")))
-
PARI
vector(50, n, n; (18*(n-1)*n-7*(2*n-1)*(-1)^n+1)/8)
-
Python
from gmpy2 import is_square [n for n in range(6000) if is_square(9*n+7)]
-
Python
[(18*(n-1)*n-7*(2*n-1)*(-1)**n+1)/8 for n in range(1, 60)]
-
Sage
[n for n in (0..6000) if is_square(9*n+7)]
-
Sage
[(18*(n-1)*n-7*(2*n-1)*(-1)^n+1)/8 for n in (1..50)]
Formula
G.f.: x*(1 + x + 14*x^2 + x^3 + x^4)/((1 + x)^2*(1 - x)^3).
a(n) = a(-n+1) = (18*(n-1)*n - 7*(2*n-1)*(-1)^n + 1)/8.
a(n) = A218864(n) + 1.
Comments