cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-6 of 6 results.

A218864 Numbers of the form 9*k^2 + 8*k, k an integer.

Original entry on oeis.org

0, 1, 17, 20, 52, 57, 105, 112, 176, 185, 265, 276, 372, 385, 497, 512, 640, 657, 801, 820, 980, 1001, 1177, 1200, 1392, 1417, 1625, 1652, 1876, 1905, 2145, 2176, 2432, 2465, 2737, 2772, 3060, 3097, 3401, 3440, 3760, 3801, 4137, 4180, 4532, 4577, 4945, 4992
Offset: 1

Views

Author

Jason Kimberley, Nov 08 2012

Keywords

Comments

Numbers m such that 9*m + 16 is a square. - Vincenzo Librandi, Apr 07 2013
Equivalently, integers of the form h*(h + 8)/9 (nonnegative values of h are listed in A090570). - Bruno Berselli, Jul 15 2016
Generalized 20-gonal (or icosagonal) numbers: r*(9*r - 8) with r = 0, +1, -1, +2, -2, +3, -3, ... - Omar E. Pol, Jun 06 2018
Partial sums of A317316. - Omar E. Pol, Jul 28 2018
Exponents in expansion of Product_{n >= 1} (1 + x^(18*n-17))*(1 + x^(18*n-1))*(1 - x^(18*n)) = 1 + x + x^17 + x^20 + x^52 + .... - Peter Bala, Dec 10 2020

Crossrefs

Characteristic function is A205987.
Numbers of the form 9*m^2+k*m, for integer n: A016766 (k=0), A132355 (k=2), A185039 (k=4), A057780 (k=6), this sequence (k=8).
Cf. A074377 (numbers m such that 16*m+9 is a square).
Cf. A317316.
For similar sequences of numbers m such that 9*m+i is a square, see list in A266956.
Cf. sequences of the form m*(m+i)/(i+1) listed in A274978. [Bruno Berselli, Jul 25 2016]
Sequences of generalized k-gonal numbers: A001318 (k=5), A000217 (k=6), A085787 (k=7), A001082 (k=8), A118277 (k=9), A074377 (k=10), A195160 (k=11), A195162 (k=12), A195313 (k=13), A195818 (k=14), A277082 (k=15), A274978 (k=16), A303305 (k=17), A274979 (k=18), A303813 (k=19), this sequence (k=20), A303298 (k=21), A303299 (k=22), A303303 (k=23), A303814 (k=24), A303304 (k=25), A316724 (k=26), A316725 (k=27), A303812 (k=28), A303815 (k=29), A316729 (k=30).

Programs

  • Magma
    a:=func; [0]cat[a(n*m): m in [-1,1], n in [1..20]];
  • Mathematica
    Array[(18 # (# - 1) - 7 (-1)^#*(2 # - 1) - 7)/8 &, 48] (* or *)
    CoefficientList[Series[x (1 + 16 x + x^2)/((1 + x)^2*(1 - x)^3), {x, 0, 47}], x] (* Michael De Vlieger, Jun 06 2018 *)

Formula

a(n) = (18*n*(n - 1) - 7*(-1)^n*(2*n - 1) - 7)/8. - Bruno Berselli, Nov 13 2012
G.f.: x*(1 + 16*x + x^2)/((1 + x)^2*(1 - x)^3). - Bruno Berselli, Nov 14 2012
Sum_{n>=2} 1/a(n) = (9 + 8*Pi*cot(Pi/9))/64. - Amiram Eldar, Feb 28 2022

A132355 Numbers of the form 9*h^2 + 2*h, for h an integer.

Original entry on oeis.org

0, 7, 11, 32, 40, 75, 87, 136, 152, 215, 235, 312, 336, 427, 455, 560, 592, 711, 747, 880, 920, 1067, 1111, 1272, 1320, 1495, 1547, 1736, 1792, 1995, 2055, 2272, 2336, 2567, 2635, 2880, 2952, 3211, 3287, 3560, 3640, 3927, 4011, 4312, 4400, 4715, 4807
Offset: 1

Views

Author

Mohamed Bouhamida, Nov 08 2007

Keywords

Comments

X values of solutions to the equation 9*X^3 + X^2 = Y^2.
The set of all m such that 9*m + 1 is a perfect square. - Gary Detlefs, Feb 22 2010
The concatenation of any term with 11..11 (1 repeated an even number of times, see A099814) belongs to the list. Example: 87 is a term, so also 8711, 871111, 87111111, 871111111111, ... are terms of this sequence. - Bruno Berselli, May 15 2017

Crossrefs

A205808 is the characteristic function.
Numbers of the form 9*n^2+k*n, for integer n: A016766 (k=0), this sequence (k=2), A185039 (k=4), A057780 (k=6), A218864 (k=8). - Jason Kimberley, Nov 09 2012
For similar sequences of numbers m such that 9*m+k is a square, see list in A266956.

Programs

Formula

a(2*k) = k*(9*k-2), a(2*k+1) = k*(9*k+2).
a(n) = n^2 - n + 5*floor(n/2)^2. - Gary Detlefs, Feb 23 2010
From R. J. Mathar, Mar 17 2010: (Start)
a(n) = +a(n-1) +2*a(n-2) -2*a(n-3) -a(n-4) +a(n-5).
G.f.: x^2*(7 + 4*x + 7*x^2)/((1 + x)^2*(1 - x)^3). (End)
a(n) = (2*n - 1 + (-1)^n)*(9*(2*n - 1) + (-1)^n)/16. - Luce ETIENNE, Sep 13 2014
Sum_{n>=2} 1/a(n) = 9/4 - cot(2*Pi/9)*Pi/2. - Amiram Eldar, Mar 15 2022

Extensions

Simpler definition and minor edits from N. J. A. Sloane, Feb 03 2012
Since this is a list, offset changed to 1 and formulas translated by Jason Kimberley, Nov 18 2012

A185039 Numbers of the form 9*m^2 + 4*m, m an integer.

Original entry on oeis.org

0, 5, 13, 28, 44, 69, 93, 128, 160, 205, 245, 300, 348, 413, 469, 544, 608, 693, 765, 860, 940, 1045, 1133, 1248, 1344, 1469, 1573, 1708, 1820, 1965, 2085, 2240, 2368, 2533, 2669, 2844, 2988, 3173, 3325, 3520, 3680, 3885, 4053, 4268, 4444, 4669, 4853, 5088
Offset: 1

Views

Author

N. J. A. Sloane, Feb 04 2012

Keywords

Comments

Also, numbers m such that 9*m+4 is a square. After 0, therefore, there are no squares in this sequence. - Bruno Berselli, Jan 07 2016

Crossrefs

Characteristic function is A205809.
Numbers of the form 9*n^2+k*n, for integer n: A016766 (k=0), A132355 (k=2), this sequence (k=4), A057780 (k=6), A218864 (k=8). [Jason Kimberley, Nov 08 2012]
For similar sequences of numbers m such that 9*m+k is a square, see list in A266956.

Programs

  • Magma
    [0] cat &cat[[9*n^2-4*n,9*n^2+4*n]: n in [1..32]]; // Bruno Berselli, Feb 04 2011
    
  • Mathematica
    CoefficientList[Series[x*(5+8*x+5*x^2)/((x+1)^2*(1-x)^3), {x,0,50}], x] (* G. C. Greubel, Jun 20 2017 *)
    LinearRecurrence[{1,2,-2,-1,1},{0,5,13,28,44},50] (* Harvey P. Dale, Jan 23 2018 *)
  • PARI
    x='x+O('x^50); Vec(x*(5+8*x+5*x^2)/((x+1)^2*(1-x)^3)) \\ G. C. Greubel, Jun 20 2017

Formula

From Bruno Berselli, Feb 04 2012: (Start)
G.f.: x*(5+8*x+5*x^2)/((x+1)^2*(1-x)^3).
a(n) = a(-n+1) = (18*n*(n-1)+(2*n-1)*(-1)^n+1)/8 = A004526(n)*A156638(n). (End).

A266957 Numbers m such that 9*m+10 is a square.

Original entry on oeis.org

-1, 6, 10, 31, 39, 74, 86, 135, 151, 214, 234, 311, 335, 426, 454, 559, 591, 710, 746, 879, 919, 1066, 1110, 1271, 1319, 1494, 1546, 1735, 1791, 1994, 2054, 2271, 2335, 2566, 2634, 2879, 2951, 3210, 3286, 3559, 3639, 3926, 4010, 4311, 4399, 4714, 4806, 5135, 5231, 5574
Offset: 1

Views

Author

Bruno Berselli, Jan 07 2016

Keywords

Comments

Equivalently, numbers of the form h*(9*h+2)-1, where h = 0, -1, 1, -2, 2, -3, 3, -4, 4, ...
Also, integer values of k*(k+2)/9 minus 1.

Crossrefs

Cf. A132355.
Cf. similar sequences listed in A266956.
Cf. A056020: square roots of 9*a(n)+10.

Programs

  • Magma
    [n: n in [-1..6000] | IsSquare(9*n+10)];
    
  • Magma
    [(18*(n-1)*n+5*(2*n-1)*(-1)^n-3)/8: n in [1..50]];
  • Mathematica
    Select[Range[-1, 6000], IntegerQ[Sqrt[9 # + 10]] &]
    Table[(18 (n - 1) n + 5 (2 n - 1) (-1)^n - 3)/8, {n, 1, 50}]
  • PARI
    for(n=-1, 6000, if(issquare(9*n+10), print1(n, ", ")))
    
  • PARI
    vector(50, n, n; (18*(n-1)*n+5*(2*n-1)*(-1)^n-3)/8)
    
  • Python
    from gmpy2 import is_square
    [n for n in range(-1,6000) if is_square(9*n+10)]
    
  • Python
    [(18*(n-1)*n+5*(2*n-1)*(-1)**n-3)/8 for n in range(1, 60)]
    
  • Sage
    [n for n in (-1..6000) if is_square(9*n+10)]
    
  • Sage
    [(18*(n-1)*n+5*(2*n-1)*(-1)^n-3)/8 for n in (1..50)]
    

Formula

G.f.: x*(-1 + 7*x + 6*x^2 + 7*x^3 - x^4)/((1 + x)^2*(1 - x)^3).
a(n) = a(-n+1) = (18*(n-1)*n + 5*(2*n-1)*(-1)^n - 3)/8.
a(n) = A132355(n) + 1.

A266958 Numbers m such that 9*m+13 is a square.

Original entry on oeis.org

-1, 4, 12, 27, 43, 68, 92, 127, 159, 204, 244, 299, 347, 412, 468, 543, 607, 692, 764, 859, 939, 1044, 1132, 1247, 1343, 1468, 1572, 1707, 1819, 1964, 2084, 2239, 2367, 2532, 2668, 2843, 2987, 3172, 3324, 3519, 3679, 3884, 4052, 4267, 4443, 4668, 4852, 5087, 5279, 5524
Offset: 1

Views

Author

Bruno Berselli, Jan 07 2016

Keywords

Comments

Equivalently, numbers of the form h*(9*h+4)-1, where h = 0, -1, 1, -2, 2, -3, 3, -4, 4, ...
Also, integer values of k*(k+4)/9 minus 1.
Is A063289 (after -1) the list of the square roots of 9*a(n)+13?

Crossrefs

Cf. A185039.
Cf. similar sequences listed in A266956.

Programs

  • Magma
    [n: n in [-1..6000] | IsSquare(9*n+13)];
    
  • Magma
    [(18*(n-1)*n+(2*n-1)*(-1)^n-7)/8: n in [1..50]];
  • Mathematica
    Select[Range[-1, 6000], IntegerQ[Sqrt[9 # + 13]] &]
    Table[(18 (n-1) n + (2 n - 1) (-1)^n - 7)/8, {n, 1, 50}]
    LinearRecurrence[{1,2,-2,-1,1},{-1,4,12,27,43},50] (* Harvey P. Dale, Jan 20 2020 *)
  • PARI
    for(n=-1, 6000, if(issquare(9*n+13), print1(n, ", ")))
    
  • PARI
    vector(50, n, n; (18*(n-1)*n+(2*n-1)*(-1)^n-7)/8)
    
  • Python
    from gmpy2 import is_square
    [n for n in range(-1,6000) if is_square(9*n+13)]
    
  • Python
    [(18*(n-1)*n+(2*n-1)*(-1)**n-7)/8 for n in range(1,60)]
    
  • Sage
    [n for n in range(-1,6000) if is_square(9*n+13)]
    
  • Sage
    [(18*(n-1)*n+(2*n-1)*(-1)^n-7)/8 for n in range(1,50)]
    

Formula

G.f.: x*(-1 + 5*x + 10*x^2 + 5*x^3 - x^4)/((1 + x)^2*(1 - x)^3).
a(n) = a(-n+1) = (18*(n-1)*n + (2*n-1)*(-1)^n - 7)/8.
a(n) = A185039(n) + 1.

A375352 Numbers k such that 14*k + 2 is a square.

Original entry on oeis.org

1, 7, 23, 41, 73, 103, 151, 193, 257, 311, 391, 457, 553, 631, 743, 833, 961, 1063, 1207, 1321, 1481, 1607, 1783, 1921, 2113, 2263, 2471, 2633, 2857, 3031, 3271, 3457, 3713, 3911, 4183, 4393, 4681, 4903, 5207, 5441, 5761, 6007, 6343, 6601, 6953, 7223, 7591, 7873
Offset: 1

Views

Author

Juri-Stepan Gerasimov, Aug 12 2024

Keywords

Comments

a(11) = 391 is first composite number in this sequence.

Crossrefs

Numbers k such that (m + (16-m)*k) is a square: A204221 (m = 1), this sequence (m = 2), A001082 (m = 4), A181433 (m = 5), A273367 (m = 6), A266956 (m = 7), A056220 (m = 8), A274978 (m = 9), A028872 (m = 12), A161532 (m = 14).

Programs

  • Magma
    [k: k in [0..8000] | IsSquare(14*k + 2)];
  • Mathematica
    ((Table[14*n + {4, 10}, {n, 0, 23}] // Flatten)^2 - 2)/14 (* Amiram Eldar, Aug 13 2024 *)

Formula

a(n) = (A113804(n)^2 - 2)/14. - Amiram Eldar, Aug 13 2024
a(n) = 2*A212965(n-1) - 1. - Hugo Pfoertner, Aug 13 2024
E.g.f.: ((2 + x + 7*x^2)*cosh(x) + (1 - x + 7*x^2)*sinh(x) - 2)/2. - Stefano Spezia, Aug 13 2024
Showing 1-6 of 6 results.