A266977 Number of ON (black) cells in the n-th iteration of the "Rule 78" elementary cellular automaton starting with a single ON (black) cell.
1, 2, 3, 3, 4, 4, 5, 5, 6, 6, 7, 7, 8, 8, 9, 9, 10, 10, 11, 11, 12, 12, 13, 13, 14, 14, 15, 15, 16, 16, 17, 17, 18, 18, 19, 19, 20, 20, 21, 21, 22, 22, 23, 23, 24, 24, 25, 25, 26, 26, 27, 27, 28, 28, 29, 29, 30, 30, 31, 31, 32, 32, 33, 33, 34, 34, 35, 35, 36
Offset: 0
References
- S. Wolfram, A New Kind of Science, Wolfram Media, 2002; p. 55.
Links
- Robert Price, Table of n, a(n) for n = 0..1000
- Cameron B. Browne, Boundary Matching for Interactive Sprouts, in: ACG 2015, pp. 147-159, LNCS 9525, Springer, doi:10.1007/978-3-319-27992-3_14.
- Eric Weisstein's World of Mathematics, Elementary Cellular Automaton
- S. Wolfram, A New Kind of Science
- Index entries for sequences related to cellular automata
- Index entries for linear recurrences with constant coefficients, signature (1,1,-1).
- Index to Elementary Cellular Automata
Programs
-
Mathematica
rule=78; rows=20; ca=CellularAutomaton[rule,{{1},0},rows-1,{All,All}]; (* Start with single black cell *) catri=Table[Take[ca[[k]],{rows-k+1,rows+k-1}],{k,1,rows}]; (* Truncated list of each row *) Table[Total[catri[[k]]],{k,1,rows}] (* Number of Black cells in stage n *)
Formula
From Colin Barker, Jan 08 2016 and Apr 16 2019: (Start)
a(n) = (2*n+(-1)^n+7)/4 for n>0.
a(n) = a(n-1)+a(n-2)-a(n-3) for n>3.
G.f.: (1+x-x^3) / ((1-x)^2*(1+x)). (End)
From Stefano Spezia, Aug 08 2021: (Start)
E.g.f.: ((4 + x)*cosh(x) + (3 + x)*sinh(x))/2 - 1.
a(n) = 2 + A004526(n) for n > 0. (End)
Comments