cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A267004 Expansion of Product_{k>=1} ((1 + k*x^k) / (1 - x^k)).

Original entry on oeis.org

1, 2, 5, 12, 24, 50, 97, 184, 331, 606, 1061, 1834, 3125, 5228, 8673, 14250, 23034, 36894, 58750, 92298, 144398, 223994, 344916, 527116, 801295, 1209870, 1816539, 2713956, 4033169, 5961700, 8775236, 12852444, 18742153, 27225316, 39371647, 56743200, 81467211
Offset: 0

Views

Author

Vaclav Kotesovec, Jan 08 2016

Keywords

Comments

Convolution of A022629 and A000041.

Crossrefs

Programs

  • Mathematica
    nmax = 50; CoefficientList[Series[Product[(1+k*x^k)/(1-x^k), {k, 1, nmax}], {x, 0, nmax}], x]

A268500 Expansion of Product_{k>=1} ((1 + k*x^k) / (1 + x^k)).

Original entry on oeis.org

1, 0, 1, 2, 2, 6, 7, 14, 11, 42, 39, 70, 95, 142, 239, 378, 418, 624, 1106, 1200, 2250, 2836, 4166, 4902, 8021, 10410, 14961, 21268, 29477, 36714, 54172, 68358, 95071, 134946, 168035, 254190, 322335, 427338, 541054, 787264, 964969, 1340730, 1748094, 2311386
Offset: 0

Views

Author

Vaclav Kotesovec, Feb 06 2016

Keywords

Crossrefs

Programs

  • Mathematica
    nmax = 50; CoefficientList[Series[Product[(1+k*x^k)/(1+x^k), {k, 1, nmax}], {x, 0, nmax}], x]

A269153 Expansion of Product_{k>=1} ((1 - k*x^k) / (1 - 2*x^k)).

Original entry on oeis.org

1, 1, 2, 3, 5, 9, 15, 33, 62, 130, 264, 554, 1081, 2237, 4483, 8952, 17933, 35921, 71755, 143502, 286713, 573198, 1146540, 2292277, 4584087, 9166802, 18334880, 36668210, 73336840, 146672469, 293348402, 586695560, 1173398119, 2346805311, 4693617598, 9387229673
Offset: 0

Views

Author

Vaclav Kotesovec, Feb 20 2016

Keywords

Crossrefs

Programs

  • Mathematica
    nmax = 50; CoefficientList[Series[Product[(1-k*x^k)/(1-2*x^k), {k, 1, nmax}], {x, 0, nmax}], x]

Formula

a(n) ~ c * 2^n, where c = Product_{k>=1} (2^k - k)/(2^k - 1) = 0.27320499481666294779155052256744055231134605935215258251663905...

A269339 Expansion of Product_{k>=1} (1 - k*x^k) / (1 + x^k).

Original entry on oeis.org

1, -2, -1, 0, 2, 6, -3, 12, -13, -2, -15, 2, -65, 44, 37, -90, 134, 26, 334, -270, 66, 18, 774, -1280, -15, -2266, 2627, -352, -3575, -516, -484, 5660, -3629, 21408, -20639, -1228, 15595, 31796, -22214, 55390, -104447, 58958, -160254, 180704, 17402, -103200
Offset: 0

Views

Author

Vaclav Kotesovec, Feb 24 2016

Keywords

Crossrefs

Programs

  • Mathematica
    nmax=50; CoefficientList[Series[Product[(1-k*x^k)/(1+x^k), {k, 1, nmax}], {x, 0, nmax}], x]

A319756 Expansion of Product_{k>=1} (1 - x^k)/(1 - k*x^k).

Original entry on oeis.org

1, 0, 1, 2, 5, 6, 18, 20, 52, 76, 151, 214, 486, 638, 1265, 1990, 3572, 5288, 9968, 14568, 26270, 40246, 68326, 104414, 182191, 271892, 457636, 708012, 1164554, 1774422, 2945077, 4450020, 7261298, 11138514, 17827308, 27228060, 43860232, 66305840, 105486224, 161284674, 253846152
Offset: 0

Views

Author

Ilya Gutkovskiy, Sep 27 2018

Keywords

Comments

Convolution of A006906 and A010815.

Crossrefs

Programs

  • Maple
    a:=series(mul((1-x^k)/(1-k*x^k),k=1..100),x=0,41): seq(coeff(a,x,n),n=0..40); # Paolo P. Lava, Apr 02 2019
  • Mathematica
    nmax = 40; CoefficientList[Series[Product[(1 - x^k)/(1 - k*x^k), {k, 1, nmax}], {x, 0, nmax}], x]
    nmax = 40; CoefficientList[Series[Exp[Sum[Sum[d (d^(k/d) - 1), {d, Divisors[k]}] x^k/k, {k, 1, nmax}]], {x, 0, nmax}], x]
    a[n_] := a[n] = If[n == 0, 1, Sum[Sum[d (d^(k/d) - 1), {d, Divisors[k]}] a[n - k], {k, 1, n}]/n]; Table[a[n], {n, 0, 40}]
  • PARI
    x='x+O('x^40); Vec(prod(n=1, 40, (1-x^n)/(1-n*x^n))) \\ Altug Alkan, Sep 27 2018

Formula

G.f.: exp(Sum_{k>=1} ( Sum_{d|k} d*(d^(k/d) - 1) ) * x^k/k).
From Vaclav Kotesovec, Sep 27 2018: (Start)
a(n) ~ c * 3^(n/3), where
c = 4613.026226899587659466790384528262900057997961519... if mod(n,3)=0
c = 4612.491093385908314202944836907761153110706939289... if mod(n,3)=1
c = 4612.543916007416515763773288072302642108310934844... if mod(n,3)=2
(End)
Showing 1-5 of 5 results.