cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A268498 Expansion of Product_{k>=1} ((1 + 2*x^k) / (1 + x^k)).

Original entry on oeis.org

1, 1, 0, 3, -1, 3, 3, 3, 0, 4, 12, 0, 9, -3, 21, 12, 17, -3, 33, 0, 33, 36, 36, 27, 21, 52, 24, 90, 72, 99, 24, 138, 21, 207, 0, 261, 149, 267, 45, 333, 174, 339, 174, 345, 411, 654, 330, 456, 657, 535, 684, 483, 1233, 489, 1353, 882, 1803, 720, 1902, 756
Offset: 0

Views

Author

Vaclav Kotesovec, Feb 06 2016

Keywords

Comments

It appears that this sequence contains only finitely many nonpositive terms, namely at indices {2, 4, 8, 11, 13, 17, 19, 34}. - Gus Wiseman, Jan 23 2019

Crossrefs

Programs

  • Mathematica
    nmax = 100; CoefficientList[Series[Product[(1+2*x^k)/(1+x^k), {k, 1, nmax}], {x, 0, nmax}], x]

Formula

a(n) ~ c^(1/4) * exp(sqrt(c*n)) / (2*sqrt(3*Pi)*n^(3/4)), where c = Pi^2/3 + 2*log(2)^2 + 4*polylog(2, -1/2) = 2.4571173338382709125... .
a(n) = Sum_{k = 0...n} (-1)^k * A133121(n,k). - Gus Wiseman, Jan 23 2019
G.f.: Product_{k>=1} (1 - Sum_{j>=1} (-1)^j * x^(k*j)). - Ilya Gutkovskiy, Nov 06 2019

A268499 Expansion of Product_{k>=1} ((1 + 3*x^k) / (1 + x^k)).

Original entry on oeis.org

1, 2, 0, 8, -2, 8, 16, 8, 8, 10, 80, -8, 72, -24, 144, 128, 134, 40, 224, 120, 232, 688, 176, 696, 32, 1194, -96, 1840, 1144, 2248, 288, 2968, 800, 4160, 752, 5104, 6438, 4984, 5104, 5488, 10960, 4856, 14080, 3480, 24408, 15448, 26832, 7080, 42120, 11178
Offset: 0

Views

Author

Vaclav Kotesovec, Feb 06 2016

Keywords

Comments

In general, for m > 0, if g.f. = Product_{k>=1} ((1 + m*x^k) / (1 + x^k)) then a(n) ~ c^(1/4) * exp(sqrt(c*n)) / (2*sqrt((m+1)*Pi) * n^(3/4)), where c = Pi^2/3 + 2*log(m)^2 + 4*polylog(2, -1/m).

Crossrefs

Programs

  • Mathematica
    nmax = 100; CoefficientList[Series[Product[(1+3*x^k)/(1+x^k), {k, 1, nmax}], {x, 0, nmax}], x]

Formula

a(n) ~ c^(1/4) * exp(sqrt(c*n)) / (4*sqrt(Pi)*n^(3/4)), where c = Pi^2/3 + 2*log(3)^2 + 4*polylog(2, -1/3) = 4.467633549370382939364... .

A268501 Expansion of Product_{k>=1} ((1 + k*x^k) / (1 + x^k))^k.

Original entry on oeis.org

1, 0, 2, 6, 11, 32, 60, 148, 279, 690, 1312, 2778, 5684, 11282, 22920, 44724, 87919, 168978, 329800, 623086, 1189794, 2235744, 4189442, 7795642, 14438670, 26577246, 48616050, 88724110, 160629612, 290267100, 521225220, 933031364, 1661954928, 2950946220
Offset: 0

Views

Author

Vaclav Kotesovec, Feb 06 2016

Keywords

Crossrefs

Programs

  • Mathematica
    nmax = 50; CoefficientList[Series[Product[((1+k*x^k)/(1+x^k))^k, {k, 1, nmax}], {x, 0, nmax}], x]

A268502 Expansion of Product_{k>=1} ((1 + k*x^k) / (1 - x^k))^k.

Original entry on oeis.org

1, 2, 8, 26, 73, 210, 558, 1460, 3663, 9090, 21846, 51690, 120140, 274480, 618656, 1374792, 3017867, 6546610, 14053312, 29852658, 62825894, 131025056, 270948160, 555811298, 1131498850, 2286780266, 4589706604, 9151298134, 18131193484, 35706460678, 69910352496
Offset: 0

Views

Author

Vaclav Kotesovec, Feb 06 2016

Keywords

Crossrefs

Programs

  • Mathematica
    nmax = 50; CoefficientList[Series[Product[((1+k*x^k)/(1-x^k))^k, {k, 1, nmax}], {x, 0, nmax}], x]

A269339 Expansion of Product_{k>=1} (1 - k*x^k) / (1 + x^k).

Original entry on oeis.org

1, -2, -1, 0, 2, 6, -3, 12, -13, -2, -15, 2, -65, 44, 37, -90, 134, 26, 334, -270, 66, 18, 774, -1280, -15, -2266, 2627, -352, -3575, -516, -484, 5660, -3629, 21408, -20639, -1228, 15595, 31796, -22214, 55390, -104447, 58958, -160254, 180704, 17402, -103200
Offset: 0

Views

Author

Vaclav Kotesovec, Feb 24 2016

Keywords

Crossrefs

Programs

  • Mathematica
    nmax=50; CoefficientList[Series[Product[(1-k*x^k)/(1+x^k), {k, 1, nmax}], {x, 0, nmax}], x]
Showing 1-5 of 5 results.