cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A268498 Expansion of Product_{k>=1} ((1 + 2*x^k) / (1 + x^k)).

Original entry on oeis.org

1, 1, 0, 3, -1, 3, 3, 3, 0, 4, 12, 0, 9, -3, 21, 12, 17, -3, 33, 0, 33, 36, 36, 27, 21, 52, 24, 90, 72, 99, 24, 138, 21, 207, 0, 261, 149, 267, 45, 333, 174, 339, 174, 345, 411, 654, 330, 456, 657, 535, 684, 483, 1233, 489, 1353, 882, 1803, 720, 1902, 756
Offset: 0

Views

Author

Vaclav Kotesovec, Feb 06 2016

Keywords

Comments

It appears that this sequence contains only finitely many nonpositive terms, namely at indices {2, 4, 8, 11, 13, 17, 19, 34}. - Gus Wiseman, Jan 23 2019

Crossrefs

Programs

  • Mathematica
    nmax = 100; CoefficientList[Series[Product[(1+2*x^k)/(1+x^k), {k, 1, nmax}], {x, 0, nmax}], x]

Formula

a(n) ~ c^(1/4) * exp(sqrt(c*n)) / (2*sqrt(3*Pi)*n^(3/4)), where c = Pi^2/3 + 2*log(2)^2 + 4*polylog(2, -1/2) = 2.4571173338382709125... .
a(n) = Sum_{k = 0...n} (-1)^k * A133121(n,k). - Gus Wiseman, Jan 23 2019
G.f.: Product_{k>=1} (1 - Sum_{j>=1} (-1)^j * x^(k*j)). - Ilya Gutkovskiy, Nov 06 2019

A268500 Expansion of Product_{k>=1} ((1 + k*x^k) / (1 + x^k)).

Original entry on oeis.org

1, 0, 1, 2, 2, 6, 7, 14, 11, 42, 39, 70, 95, 142, 239, 378, 418, 624, 1106, 1200, 2250, 2836, 4166, 4902, 8021, 10410, 14961, 21268, 29477, 36714, 54172, 68358, 95071, 134946, 168035, 254190, 322335, 427338, 541054, 787264, 964969, 1340730, 1748094, 2311386
Offset: 0

Views

Author

Vaclav Kotesovec, Feb 06 2016

Keywords

Crossrefs

Programs

  • Mathematica
    nmax = 50; CoefficientList[Series[Product[(1+k*x^k)/(1+x^k), {k, 1, nmax}], {x, 0, nmax}], x]
Showing 1-2 of 2 results.