A267028 P(n,k) is an array read by rows, with n > 0 and k=1..5, where row n gives the chain of 5 consecutive primes {p(i), p(i+1), p(i+2), p(i+3), p(i+4)} having the symmetrical property p(i) + p(i+4) = p(i+1) + p(i+3) = 2*p(i+2) for some index i.
18713, 18719, 18731, 18743, 18749, 25603, 25609, 25621, 25633, 25639, 28051, 28057, 28069, 28081, 28087, 30029, 30047, 30059, 30071, 30089, 31033, 31039, 31051, 31063, 31069, 44711, 44729, 44741, 44753, 44771, 76883, 76907, 76913, 76919, 76943
Offset: 1
Examples
The first row is [18713, 18719, 18731, 18743, 18749] because 18713 + 18749 = 18719 + 18743 = 2*18731 = 37462. The array starts with: [18713, 18719, 18731, 18743, 18749] [25603, 25609, 25621, 25633, 25639] [28051, 28057, 28069, 28081, 28087] ...
Programs
-
Maple
U:=array(1..50,1..5):W:=array(1..2):kk:=0: for n from 4 to 10000 do: for m from 2 by -1 to 1 do: q:=ithprime(n-m)+ithprime(n+m):W[m]:=q: od: if W[1]=W[2] and W[1]=2*ithprime(n) then kk:=kk+1:U[kk,1]:=ithprime(n-2): U[kk,2]:=ithprime(n-1):U[kk,3]:=ithprime(n): U[kk,4]:=ithprime(n+1):U[kk,5]:=ithprime(n+2): else fi:od:print(U): for i from 1 to kk do: for j from i+1 to kk do: s1:=U[i,1]+U[j,5]: s2:=U[i,2]+U[j,4]: s3:=U[i,3]+U[j,3]: s4:=U[i,4]+U[j,2]: s5:=U[i,5]+U[j,1]: if s1=s2 and s2=s3 and s3=s4 and s4=s5 then printf("%d %d \n",i,j): else fi: od: od:
Comments