cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A267031 a(n) = (32*n^3 - 2*n)/3.

Original entry on oeis.org

0, 10, 84, 286, 680, 1330, 2300, 3654, 5456, 7770, 10660, 14190, 18424, 23426, 29260, 35990, 43680, 52394, 62196, 73150, 85320, 98770, 113564, 129766, 147440, 166650, 187460, 209934, 234136, 260130, 287980, 317750, 349504, 383306, 419220, 457310, 497640, 540274, 585276, 632710, 682640, 735130, 790244
Offset: 0

Views

Author

Peter M. Chema, Jan 09 2016

Keywords

Comments

This sequence alternates with the tetrahedral numbers, A000292, to create the centered octagonal pyramidal number sequence, A000447.

Examples

			a(4) = (32/3)*4^3 - (2/3)*4 = 680.
		

Crossrefs

Programs

  • Magma
    [32/3*n^3-2/3*n: n in [0..35]]; // Vincenzo Librandi, Jan 10 2016
    
  • Mathematica
    Table[(32 n^3 - 2 n)/3, {n, 0, 42}] (* or *)
    CoefficientList[Series[(2 x (5 + 22 x + 5 x^2))/(-1 + x)^4, {x, 0, 41}], x] (* Michael De Vlieger, Jan 09 2016 *)
  • PARI
    concat(0, Vec(2*x*(5+22*x+5*x^2)/(1-x)^4 + O(x^100))) \\ Colin Barker, Jan 10 2016
    
  • PARI
    a(n) = (32*n^3 - 2*n)/3; \\ Altug Alkan, Jan 10 2015

Formula

G.f.: 2*x*(5 + 22*x + 5*x^2)/(-1 + x)^4. - Michael De Vlieger, Jan 09 2016
a(n) = 4*a(n-1) - 6*a(n-2) + 4*a(n-3) - a(n-4) for n > 3. - Colin Barker, Jan 10 2016
From Amiram Eldar, Jan 04 2022: (Start)
Sum_{n>=1} 1/a(n) = 9*log(2)/2 - 3.
Sum_{n>=1} (-1)^(n+1)/a(n) = 3 - 3*(2-sqrt(2))*log(2)/4 - 3*sqrt(2)*log(sqrt(2)+2)/2. (End)
a(n) = binomial(4*n+1, 3). - Michel Marcus, Mar 05 2022
a(n) = 8*A000447(n) + A005843(n). - Yasser Arath Chavez Reyes, Mar 02 2024
From Elmo R. Oliveira, Sep 06 2025: (Start)
E.g.f.: 2*x*(15 + 48*x + 16*x^2)*exp(x)/3.
a(n) = A069140(n)/6. (End)

Extensions

More terms from Michael De Vlieger, Jan 09 2016
First term added from Vincenzo Librandi, Jan 10 2016