A267140 Least m>0 for which m + n^2 is a square and m + triangular(n) is a triangular number (A000217).
1, 35, 12, 72, 180, 336, 45, 792, 1092, 208, 1836, 2280, 112, 315, 3900, 4536, 644, 5952, 6732, 7560, 225, 715, 10332, 627, 12420, 13536, 924, 1575, 17172, 840, 396, 21240, 22692, 3267, 2565, 27336, 28980, 3392, 32412, 34200, 1881, 3795, 637, 1400, 1785, 45936, 2240
Offset: 0
Keywords
Examples
12 + 2^2 = 16 is a square, and 12 + 2*3/2 = 15 is a triangular number, and 12 is the least such integer, so a(2)=12.
Links
- Chai Wah Wu, Table of n, a(n) for n = 0..10000
Programs
-
Mathematica
lmst[n_]:=Module[{m=1,n2=n^2,nt=(n(n+1))/2},While[ !IntegerQ[Sqrt[ m+n2]] || !OddQ[Sqrt[1+8(m+nt)]],m++];m]; Join[{1},Array[lmst,50]] (* Harvey P. Dale, Aug 15 2021 *)
-
PARI
a(n) = {m = 1; while (! (issquare(m+n^2) && ispolygonal(m+n*(n+1)/2, 3)), m++); m;} \\ Michel Marcus, Jan 11 2016
-
Python
from math import sqrt def A267140(n): u,r,k,m = 2*n+1,4*n*(n+1)+1,0,2*n+1 while True: if int(sqrt(8*m+r))**2 == 8*m+r: return m k += 2 m += u + k # Chai Wah Wu, Jan 13 2016
Comments