A267137 Numbers of the form x^2 + x + x*y + y + y^2 where x and y are integers.
0, 1, 2, 4, 5, 6, 8, 9, 10, 12, 14, 16, 17, 20, 21, 22, 24, 25, 26, 30, 32, 33, 34, 36, 37, 40, 41, 42, 44, 46, 49, 50, 52, 54, 56, 57, 58, 60, 64, 65, 66, 69, 70, 72, 74, 76, 80, 81, 82, 85, 86, 89, 90, 92, 94, 96, 97, 100, 101, 102, 104, 105, 108, 110, 112, 114, 116
Offset: 1
Keywords
Examples
1 is a term because (-1)^2 + (-1) + (-1)*(-1) + (-1) + (-1)^2 = 1. 4 is a term because 2^2 + 2 + 2*(-2) + (-2) + (-2)^2 = 4. 24 is a term because 2^2 + 2 + 2*3 + 3 + 3^2 = 24.
Links
- Michael De Vlieger, Table of n, a(n) for n = 1..10583
- Alexandre Chaduteau, Nyan Raess, Henry Davenport, and Frank Schindler, Hilbert Space Fragmentation in the Chiral Luttinger Liquid, arXiv:2409.10359 [cond-mat.str-el], 2024. See pp. 5, 8.
- Alexandre Chaduteau, Nyan Raess, Henry Davenport, and Frank Schindler, Momentum-space modulated symmetries in the Luttinger liquid, Phys. Rev. B (2025) Vol. 111, Art. No. 165105. See p. 4.
Programs
-
Mathematica
f[{i_, j_}] := (i^2 + i*j + j^2 + i + j); Union@ Map[f, Tuples[Range[-10, 10], 2] ] (* Michael De Vlieger, Sep 23 2024, after Harvey P. Dale at A202822 *)
-
PARI
x='x+O('x^500); p=eta(x)^3/eta(x^3); for(n=0, 499, if(polcoeff(p, n) != 0 && n%3==1, print1((n-1)/3, ", ")));
-
PARI
is(n) = sumdiv( n, d, kronecker( -3, d)); for(n=0, 1e3, if(is(3*n+1), print1(n, ", ")));
-
PARI
is(n) = #bnfisintnorm(bnfinit(z^2+z+1), n); for(n=0, 1e3, if(is(3*n+1), print1(n, ", ")));
Formula
a(n) = (A202822(n) - 1) / 3.
Comments