cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A267143 Primes q such that Sum_(q-1; i=1..m) e(i)/p(i) is an integer k, where the prime factorization of n is Product_(n; i=1..m) p(i)^e(i).

Original entry on oeis.org

5, 17, 109, 257, 433, 2917, 65537, 746497, 1350001, 1769473, 3294173, 5038849, 5400001, 8503057, 21600001, 28311553, 57395629, 113246209, 145800001, 210827009, 984150001, 1811939329, 2500000001, 3936600001, 4218750001, 5692329217, 9331200001, 16875000001
Offset: 1

Views

Author

Jaroslav Krizek, Jan 11 2016

Keywords

Comments

Primes from the set {A072873(n) + 1: n>1}.
Fermat primes > 3 from A019434 are in the sequence.
Corresponding values of k: 1, 2, 2, 4, 3, 3, 8, 7, 4, 9, 2, 7, 5, ...

Examples

			Prime 433 is a term because 432 = 2^4 * 3^3 and 4/2 + 3/3 = 3 (integer).
		

Crossrefs

Programs

  • Magma
    [n: n in [3..10^8] | IsPrime(n) and Denominator(&+[p[2]/p[1]: p in Factorization(n-1)]) eq 1];
    
  • PARI
    isA072873(n)=my(f=factor(n)); for(i=1, #f~, if(f[i, 2]%f[i, 1], return(0))); 1
    lista(nn) = {forprime(p=2, nn, if (isA072873(p-1), print1(p, ", ")););} \\ Michel Marcus, Jan 21 2016