cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A267167 Growth series for affine Coxeter group B_4.

Original entry on oeis.org

1, 5, 14, 31, 59, 101, 161, 243, 351, 488, 658, 865, 1112, 1403, 1741, 2130, 2574, 3077, 3643, 4274, 4974, 5747, 6597, 7528, 8543, 9646, 10840, 12129, 13517, 15007, 16603, 18309, 20129, 22066, 24123, 26304, 28613, 31054, 33631, 36347, 39205, 42209, 45363, 48671, 52136, 55762, 59553, 63512, 67643, 71949, 76434, 81102, 85957, 91003, 96242
Offset: 0

Views

Author

N. J. A. Sloane, Jan 11 2016

Keywords

References

  • N. Bourbaki, Groupes et Algèbres de Lie, Chap. 4, 5 and 6, Hermann, Paris, 1968. See Chap. VI, Section 4, Problem 10b, page 231, W_a(t).

Crossrefs

The growth series for the finite Coxeter (or Weyl) groups B_2 through B_12 are A161696-A161699, A161716, A161717, A161733, A161755, A161776, A161858. These are all rows of A128084. The growth series for the affine Coxeter (or Weyl) groups B_2 through B_12 are A008576, A008137, A267167-A267175.

Programs

  • Magma
    m:=40; R:=PowerSeriesRing(Integers(), m); Coefficients(R!((1-t^2)*(1+t^3)*(1-t^4)*(1-t^8)/((1-t)^5*(1-t^5)*(1 - t^7)))); // G. C. Greubel, Oct 24 2018
  • Maple
    seq(coeff(series((1-x^2)*(1+x^3)*(1-x^4)*(1-x^8)/((1-x)^5*(1-x^5)*(1-x^7)),x,n+1), x, n), n = 0 .. 55); # Muniru A Asiru, Oct 25 2018
  • Mathematica
    CoefficientList[Series[(1-t^2)*(1+t^3)*(1-t^4)*(1-t^8)/((1-t)^5*(1-t^5)*(1 - t^7)), {t, 0, 50}], t] (* G. C. Greubel, Oct 24 2018 *)
  • PARI
    t='t+O('t^40); Vec((1-t^2)*(1+t^3)*(1-t^4)*(1-t^8)/((1-t)^5*(1-t^5)*(1 - t^7))) \\ G. C. Greubel, Oct 24 2018
    

Formula

The growth series for the affine Coxeter group of type B_k (k >= 2) has g.f. = Product_i (1-x^{m_i+1})/((1-x)*(1-x^{m_i})) where the m_i are [1,3,5,...,2k-1].
Here (k=4) the G.f. is (1+t+t^2+t^3+t^4+t^5+t^6+t^7)*(t^3+1)*(1+t+t^2+t^3)*(1+t) / (-1+t^7)/(-1+t^5)/(-1+t)^2.
a(n) = 2*a(n-1) - a(n-2) + a(n-5) - 2*a(n-6) + 2*a(n-7) - 2*a(n-8) + a(n-9) - a(n-12) + 2*a(n-13) - a(n-14), n > 0. - Muniru A Asiru, Oct 25 2018