A233302
Number of (2+1) X (n+1) 0..1 arrays x(i,j) with row sums sum{x(i,j), j=1..n+1} nondecreasing, and column sums sum{i^2*x(i,j), i=1..2+1} nondecreasing.
Original entry on oeis.org
15, 42, 105, 232, 475, 904, 1632, 2806, 4642, 7414, 11500, 17368, 25636, 37054, 52579, 73354, 100799, 136586, 182749, 241654, 316129, 409430, 525392, 668390, 843514, 1056524, 1314050, 1623542, 1993496, 2433398, 2953979, 3567152, 4286297, 5126192
Offset: 1
Some solutions for n=5:
..0..0..0..0..1..0....1..1..0..0..0..0....0..0..1..0..0..0....0..0..0..0..0..1
..0..0..0..0..0..1....0..0..1..1..1..1....0..0..0..0..0..1....0..1..1..1..1..1
..0..0..0..1..1..1....0..1..1..1..1..1....0..0..0..1..1..1....0..1..1..1..1..1
A233303
Number of (3+1)X(n+1) 0..1 arrays x(i,j) with row sums sum{x(i,j), j=1..n+1} nondecreasing, and column sums sum{i^2*x(i,j), i=1..3+1} nondecreasing.
Original entry on oeis.org
31, 141, 567, 1986, 6292, 18205, 48913, 123084, 292784, 662512, 1434508, 2985639, 5997455, 11666253, 22040149, 40541549, 72770415, 127706638, 219494579, 370035418, 612722058, 997726253, 1599424522, 2526675993, 3936943281
Offset: 1
Some solutions for n=5
..0..0..1..0..0..0....0..1..0..0..0..1....0..0..0..0..0..1....1..1..1..0..0..0
..1..0..0..1..0..0....0..0..0..1..1..1....1..0..1..0..0..1....0..0..0..1..1..1
..1..0..0..0..1..1....0..0..0..1..1..1....0..1..1..0..0..1....1..0..1..1..1..1
..0..1..1..1..1..1....0..0..1..1..1..1....0..0..0..1..1..1....0..1..1..1..1..1
A267240
Number of n X 3 binary arrays with row sums nondecreasing and columns lexicographically nondecreasing.
Original entry on oeis.org
4, 13, 42, 141, 486, 1685, 5804, 19769, 66544, 221581, 730918, 2391717, 7772610, 25110933, 80713016, 258280817, 823269116, 2615088973, 8281113730, 26150883901, 82375282494, 258893742933, 811984918692, 2541865829801, 7943330715176
Offset: 1
Some solutions for n=4:
..0..0..1....0..0..1....0..0..0....0..0..1....0..0..1....0..0..1....0..0..1
..0..1..0....0..1..0....0..1..1....0..0..1....0..1..0....0..0..1....1..1..0
..1..0..0....1..1..0....1..0..1....0..1..1....0..0..1....0..0..1....0..1..1
..1..1..0....1..1..1....0..1..1....0..1..1....0..0..1....1..1..0....1..0..1
A267241
Number of nX4 binary arrays with row sums nondecreasing and columns lexicographically nondecreasing.
Original entry on oeis.org
5, 22, 105, 567, 3351, 20676, 129129, 804817, 4982759, 30629206, 187121865, 1137631979, 6891047527, 41628865000, 250987078681, 1511105743781, 9088662549303, 54625229882746, 328144877989145, 1970524978549951
Offset: 1
Some solutions for n=4
..0..0..0..0....0..0..0..0....0..0..1..1....0..0..1..1....0..0..0..1
..0..0..0..0....0..0..0..1....0..0..1..1....0..1..0..1....0..1..1..0
..0..1..1..1....0..1..1..0....0..1..1..1....1..0..1..0....0..1..1..1
..1..0..1..1....0..1..1..0....1..0..1..1....1..0..1..0....0..1..1..1
- R. H. Hardin, Table of n, a(n) for n = 1..210
- Robert Israel, Maple-assisted proof of empirical recurrence
- Index entries for linear recurrences with constant coefficients, signature (24, -246, 1420, -5121, 12084, -18944, 19536, -12720, 4736, -768).
-
states:= select(proc(x) (x[1]=x[2] or x[5]=1) and (x[2]=x[3] or x[6]=1) and (x[3]=x[4] or x[7]=1) end proc, [seq(seq(seq(seq(seq(seq(seq([a,b,c,d,e,f,g],g=0..1),f=0..1),e=0..1),d=0..1),c=0..1),b=0..1),a=0..1)]):
T:= Matrix(54,54,proc(i,j) local k;
if add(states[j,k]-states[i,k],k=1..4) > 0 then return 0 fi;
if states[j,5]>states[i,5] or states[j,6]>states[i,6] or states[j,7]>states[i,7] then return 0 fi;
if states[i,1]>=states[i,2] and states[j,5]<> states[i,5] then return 0 fi;
if states[i,2]>=states[i,3] and states[j,6]<> states[i,6] then return 0 fi;
if states[i,3]>=states[i,4] and states[j,7]<> states[i,7] then return 0 fi;
1
end proc):
U:= Vector(54,1):
E[0]:= Vector(54): E[0][1]:= 1:
for k from 1 to 25 do E[k]:= T . E[k-1] od:
seq(U^%T . E[j], j=1..25); # Robert Israel, Sep 08 2019
-
LinearRecurrence[{24, -246, 1420, -5121, 12084, -18944, 19536, -12720, 4736, -768}, {5, 22, 105, 567, 3351, 20676, 129129, 804817, 4982759, 30629206, 187121865}, 25] (* Jean-François Alcover, Oct 25 2022, after Robert Israel *)
A267242
Number of nX5 binary arrays with row sums nondecreasing and columns lexicographically nondecreasing.
Original entry on oeis.org
6, 34, 232, 1986, 20040, 220235, 2499080, 28501471, 323067002, 3626695952, 40306404192, 443852375808, 4848323701804, 52590398731297, 567018802063680, 6081537709403509, 64929807220896558, 690446673537426382
Offset: 1
Some solutions for n=4
..0..0..0..0..1....0..0..0..1..1....0..0..0..1..1....0..0..0..0..1
..0..0..0..1..0....0..1..1..0..0....0..1..1..0..0....0..0..0..1..0
..0..1..1..0..0....0..0..1..1..1....1..1..1..0..1....0..0..0..0..1
..1..0..1..1..1....1..0..1..0..1....1..1..1..1..0....0..1..1..1..0
- R. H. Hardin, Table of n, a(n) for n = 1..210
- Robert Israel, Maple-assisted proof of empirical formula
- Index entries for linear recurrences with constant coefficients, signature (52, -1196, 16140, -142918, 879116, -3875668, 12442580, -29232481, 50015232, -61355336, 52355680, -29405200, 9744000, -1440000).
-
S[2]:= [[0,0,0],[0,0,1],[0,1,1],[1,0,1],[1,1,0],[1,1,1]]:
for i from 3 to 5 do
S[i]:= map(proc(t) [op(t[1..i-1]),t[i-1],op(t[i..-1]),0], [op(t[1..i-1]),t[i-1],op(t[i..-1]),1],
[op(t[1..i-1]),1-t[i-1],op(t[i..-1]),1] end proc, S[i-1])
od:
states:= S[5]:
T:= Matrix(162,162,proc(i,j) local k;
if add(states[j,k]-states[i,k],k=1..5) > 0 then return 0 fi;
for k from 6 to 9 do if states[j,k]>states[i,k] then return 0 fi od;
for k from 1 to 4 do if states[i,k]>=states[i,k+1] and states[j,k+5]<>states[i,k+5] then return 0 fi od;
1
end proc):
E:= Vector(162): E[1]:= 1:
U[0]:= Vector[row](162,1):
for k from 1 to 25 do U[k]:= U[k-1].T od:
seq(U[j] . E, j=1..25); # Robert Israel, Sep 08 2019
A267243
Number of n X 6 binary arrays with row sums nondecreasing and columns lexicographically nondecreasing.
Original entry on oeis.org
7, 50, 475, 6292, 107015, 2093467, 43555569, 924051709, 19614050515, 413556580944, 8645774602327, 179276181587698, 3691120876565687, 75550095426967737, 1538986699132717645, 31229753343696948035
Offset: 1
Some solutions for n=4:
0 0 0 0 1 1 0 0 0 0 1 1 0 0 0 0 1 1 0 0 0 1 1 1
0 0 0 1 0 1 0 0 1 1 0 0 0 0 1 1 0 0 0 1 1 0 0 1
0 1 1 1 1 0 0 0 0 1 1 1 0 1 0 0 0 1 1 1 1 1 1 0
0 0 1 1 1 1 0 1 0 1 0 1 1 1 0 1 0 1 1 0 1 1 1 1
- R. H. Hardin, Table of n, a(n) for n = 1..210
- Robert Israel, Maple-assisted proof of empirical recurrence
- Index entries for linear recurrences with constant coefficients, signature (114, -5915, 186008, -3982785, 61835542, -723657627, 6549515604, -46652032035, 264676225246, -1205477853945, 4427867737616, -13139368875011, 31468929403866, -60602488003009, 93197329064964, -113220771193368, 106920682204032, -76630180181904, 40173465734208, -14497964755200, 3213273369600, -329204736000).
-
S[2]:= [[0,0,0],[0,0,1],[0,1,1],[1,0,1],[1,1,0],[1,1,1]]:
for i from 3 to 6 do
S[i]:= map(proc(t) [op(t[1..i-1]),t[i-1],op(t[i..-1]),0], [op(t[1..i-1]),t[i-1],op(t[i..-1]),1],
[op(t[1..i-1]),1-t[i-1],op(t[i..-1]),1] end proc, S[i-1])
od:
states:= S[6]:
T:= Matrix(486,486,proc(i,j) local k;
if add(states[j,k]-states[i,k],k=1..6) > 0 then return 0 fi;
for k from 7 to 11 do if states[j,k]>states[i,k] then return 0 fi od;
for k from 1 to 5 do if states[i,k]>=states[i,k+1] and states[j,k+6]<>states[i,k+6] then return 0 fi od;
1
end proc):
E:= Vector(486): E[1]:= 1:
U[0]:= Vector[row](486,1):
for k from 1 to 25 do U[k]:= U[k-1].T od:
seq(U[j] . E, j=1..25); # Robert Israel, Sep 08 2019
A267244
Number of n X 7 binary arrays with row sums nondecreasing and columns lexicographically nondecreasing.
Original entry on oeis.org
8, 70, 904, 18205, 516084, 17892539, 683027146, 27044976947, 1079112886476, 42860145907558, 1687239907979286, 65777529883058423, 2540922972496976428, 97351678797063744735, 3703224984260808730288, 139993814565092144904305
Offset: 1
Some solutions for n=4:
0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 1 1 1 0
0 0 0 0 1 1 1 0 0 1 1 0 0 0 0 0 1 0 1 1 0
0 0 1 1 0 1 1 0 1 1 1 1 0 0 0 0 1 1 0 1 0
- R. H. Hardin, Table of n, a(n) for n = 1..210
- Robert Israel, Maple-assisted proof of empirical formula
- Index entries for linear recurrences with constant coefficients, signature (236, -25680, 1717504, -79417394, 2707798440, -70899406188, 1465896913824, -24421757248431, 332861244138564, -3755300016546300, 35390628699049728, -280610566308801516, 1882413463252467120, -10729331312513919192, 52123544280277991616, -216277785263000273775, 767370439659990868020, -2328674591889971376488, 6039623808173911907968, -13364805995823788545362, 25161918805489259088488, -40140151907739595227388, 53955000634729356546720, -60650423670523051920321, 56445409553303282568732, -42910761548685014780364, 26160176586524646234240, -12460398044348337274800, 4460624272170497592000, -1127355192728480520000, 179146175950526400000, -13449500030736000000).
-
S[2]:= [[0,0,0],[0,0,1],[0,1,1],[1,0,1],[1,1,0],[1,1,1]]:
for i from 3 to 7 do
S[i]:= map(proc(t) [op(t[1..i-1]),t[i-1],op(t[i..-1]),0], [op(t[1..i-1]),t[i-1],op(t[i..-1]),1],
[op(t[1..i-1]),1-t[i-1],op(t[i..-1]),1] end proc, S[i-1])
od:
states:= S[7]:
T:= Matrix(1458,1458,proc(i,j) local k;
if add(states[j,k]-states[i,k],k=1..7) > 0 then return 0 fi;
for k from 8 to 13 do if states[j,k]>states[i,k] then return 0 fi od;
for k from 1 to 6 do if states[i,k]>=states[i,k+1] and states[j,k+7]<>states[i,k+7] then return 0 fi od;
1
end proc):
E:= Vector(1458): E[1]:= 1:
U[0]:= Vector[row](1458,1):
for k from 1 to 32 do U[k]:= U[k-1].T od:
seq(U[j] . E, j=1..32); # Robert Israel, Sep 08 2019
A267239
Number of n X n binary arrays with row sums nondecreasing and columns lexicographically nondecreasing.
Original entry on oeis.org
2, 7, 42, 567, 20040, 2093467, 683027146, 723576702570, 2549735632656528, 30465608408449993885, 1250919952257037350168062, 178764247753852768666003981113, 89752660973687899647122735126286078
Offset: 1
Some solutions for n=4
..0..0..0..1....0..0..0..1....0..0..1..1....0..0..0..1....0..0..0..1
..0..1..1..0....0..0..0..1....0..1..0..1....0..0..1..1....0..0..1..1
..1..0..1..0....0..0..1..1....1..1..0..0....0..1..0..1....1..1..1..0
..1..1..1..1....1..1..1..0....1..1..0..0....1..1..1..0....1..1..0..1
A267248
Number of 5Xn binary arrays with row sums nondecreasing and columns lexicographically nondecreasing.
Original entry on oeis.org
6, 63, 486, 3351, 20040, 107015, 516084, 2278687, 9303052, 35428544, 126753732, 428651446, 1377310514, 4223642819, 12409437728, 35050866249, 95459908872, 251341796912, 641282264972, 1588863292072
Offset: 1
Some solutions for n=4
..0..0..0..0....0..0..0..1....0..0..0..0....0..0..0..0....0..0..0..0
..0..0..1..1....0..0..0..1....0..0..0..1....0..0..0..1....0..0..0..0
..1..1..0..0....0..0..1..0....0..1..1..0....0..0..1..0....0..0..0..1
..1..1..0..1....1..1..0..1....1..0..1..1....1..1..0..1....0..0..1..1
..1..1..1..1....0..1..1..1....0..1..1..1....0..1..1..1....1..1..1..1
A267249
Number of 6Xn binary arrays with row sums nondecreasing and columns lexicographically nondecreasing.
Original entry on oeis.org
7, 127, 1685, 20676, 220235, 2093467, 17892539, 139164323, 993947185, 6572368601, 40512935649, 234192144667, 1276154088792, 6584891361478, 32302298031855, 151176059240006
Offset: 1
Some solutions for n=4
..0..0..0..1....0..0..0..1....0..0..1..1....0..0..0..1....0..0..0..1
..0..0..1..0....1..1..1..0....1..1..0..0....0..0..1..1....0..0..1..0
..0..1..0..0....1..1..1..0....1..1..0..0....0..1..1..0....0..1..1..0
..1..1..0..0....0..1..1..1....0..1..0..1....1..1..1..0....1..1..0..0
..0..1..1..0....1..0..1..1....1..1..0..0....1..1..0..1....0..1..1..1
..1..1..0..0....0..1..1..1....0..1..1..0....1..1..1..1....1..1..1..1
Showing 1-10 of 11 results.
Comments