A267370 Partial sums of A140091.
0, 6, 21, 48, 90, 150, 231, 336, 468, 630, 825, 1056, 1326, 1638, 1995, 2400, 2856, 3366, 3933, 4560, 5250, 6006, 6831, 7728, 8700, 9750, 10881, 12096, 13398, 14790, 16275, 17856, 19536, 21318, 23205, 25200, 27306, 29526, 31863, 34320, 36900, 39606, 42441, 45408, 48510
Offset: 0
Examples
The sequence is also provided by the row sums of the following triangle (see the fourth formula above): . 0; . 1, 5; . 4, 7, 10; . 9, 11, 13, 15; . 16, 17, 18, 19, 20; . 25, 25, 25, 25, 25, 25; . 36, 35, 34, 33, 32, 31, 30; . 49, 47, 45, 43, 41, 39, 37, 35; . 64, 61, 58, 55, 52, 49, 46, 43, 40; . 81, 77, 73, 69, 65, 61, 57, 53, 49, 45, etc. First column is A000290. Second column is A027690. Third column is included in A189834. Main diagonal is A008587; other parallel diagonals: A016921, A017029, A017077, A017245, etc. Diagonal 1, 11, 25, 43, 65, 91, 121, ... is A161532.
Links
- Bruno Berselli, Table of n, a(n) for n = 0..1000
- Index entries for linear recurrences with constant coefficients, signature (4,-6,4,-1).
Crossrefs
Programs
-
Magma
[n*(n+1)*(n+5)/2: n in [0..50]];
-
Mathematica
Table[n (n + 1) (n + 5)/2, {n, 0, 50}] LinearRecurrence[{4,-6,4,-1},{0,6,21,48},50] (* Harvey P. Dale, Jul 18 2019 *)
-
PARI
vector(50, n, n--; n*(n+1)*(n+5)/2)
-
Sage
[n*(n+1)*(n+5)/2 for n in (0..50)]
Formula
O.g.f.: 3*x*(2 - x)/(1 - x)^4.
E.g.f.: x*(12 + 9*x + x^2)*exp(x)/2.
a(n) = n*(n + 1)*(n + 5)/2.
a(n) = Sum_{i=0..n} n*(n - i) + 5*i, that is: a(n) = A002411(n) + A028895(n). More generally, Sum_{i=0..n} n*(n - i) + k*i = n*(n + 1)*(n + k)/2.
a(n) = 3*A005581(n+1).
a(n+1) - 3*a(n) + 3*a(n-1) = 3*A105163(n) for n>0.
From Amiram Eldar, Jan 06 2021: (Start)
Sum_{n>=1} 1/a(n) = 163/600.
Sum_{n>=1} (-1)^(n+1)/a(n) = 4*log(2)/5 - 253/600. (End)
Comments