A267383 Number A(n,k) of acyclic orientations of the Turán graph T(n,k); square array A(n,k), n>=0, k>=1, read by antidiagonals.
1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 2, 4, 1, 1, 1, 2, 6, 14, 1, 1, 1, 2, 6, 18, 46, 1, 1, 1, 2, 6, 24, 78, 230, 1, 1, 1, 2, 6, 24, 96, 426, 1066, 1, 1, 1, 2, 6, 24, 120, 504, 2286, 6902, 1, 1, 1, 2, 6, 24, 120, 600, 3216, 15402, 41506, 1
Offset: 0
Examples
Square array A(n,k) begins: 1, 1, 1, 1, 1, 1, 1, ... 1, 1, 1, 1, 1, 1, 1, ... 1, 2, 2, 2, 2, 2, 2, ... 1, 4, 6, 6, 6, 6, 6, ... 1, 14, 18, 24, 24, 24, 24, ... 1, 46, 78, 96, 120, 120, 120, ... 1, 230, 426, 504, 600, 720, 720, ... 1, 1066, 2286, 3216, 3720, 4320, 5040, ...
Links
- Alois P. Heinz, Antidiagonals n = 0..140, flattened
- Richard P. Stanley, Acyclic Orientations of Graphs, Discrete Mathematics, 5 (1973), pages 171-178, doi:10.1016/0012-365X(73)90108-8
- Wikipedia, Acyclic orientation
- Wikipedia, Turán graph
Crossrefs
Programs
-
Maple
A:= proc(n, k) option remember; local b, l, q; q:=-1; l:= [floor(n/k)$(k-irem(n,k)), ceil(n/k)$irem(n,k)]; b:= proc(n, j) option remember; `if`(j=1, (q-n)^l[1]* mul(q-i, i=0..n-1), add(b(n+m, j-1)* Stirling2(l[j], m), m=0..l[j])) end; forget(b); abs(b(0, k)) end: seq(seq(A(n, 1+d-n), n=0..d), d=0..14);
-
Mathematica
A[n_, k_] := A[n, k] = Module[{ b, l, q}, q = -1; l = Join[Array[Floor[n/k] &, k - Mod[n, k]], Array[ Ceiling[n/k] &, Mod[n, k]]]; b[nn_, j_] := b[nn, j] = If[j == 1, (q - nn)^l[[1]]*Product[q - i, {i, 0, nn - 1}], Sum[b[nn + m, j - 1]*StirlingS2[l[[j]], m], {m, 0, l[[j]]}]]; Abs[b[0, k]]]; Table[Table[A[n, 1 + d - n], {n, 0, d}], {d, 0, 14}] // Flatten (* Jean-François Alcover, Feb 22 2016, after Alois P. Heinz *)
Comments