A267435 Numbers n such that each reduced Collatz trajectory (mod p): (n, T(n), T(T(n)),..., 4, 2, 1) / pZ, where the odd prime p is the number of iterations needed to reach 1, contains exactly the p-1 values {1, 2, 3, .., p-1}.
8, 20, 32, 320, 2048, 2216, 8192, 13312, 87040, 218432, 524288, 89478400, 536870912, 137438953472, 250199979283796, 9007199254740992, 63800994005254144, 96076791692656640, 382805968326492160, 576460752303423488, 2305843009213693952, 4099276399740365440
Offset: 1
Keywords
Examples
20 is in the sequence because the Collatz trajectory of 20 is {20 -> 10 -> 5 -> 16 -> 8 -> 4 -> 2 -> 1} with 7 iterations, and the corresponding reduced trajectory (mod 7) is {6, 3, 5, 2, 1, 4, 2, 1} => the multiplicative group of order 6 is G = {1, 2, 3, 4, 5, 6}.
Links
- Hiroaki Yamanouchi, Table of n, a(n) for n = 1..37
- Wikipedia, Artin's conjecture on primitive roots.
Programs
-
Maple
nn:=10000:T:=array(1..2000):U:=array(1..2000): for n from 1 to 10000000 do: kk:=1:m:=n:T[kk]:=n:it:=0: for i from 1 to nn while(m<>1) do: if irem(m,2)=0 then m:=m/2:kk:=kk+1:T[kk]:=m:it:=it+1: else m:=3*m+1:kk:=kk+1:T[kk]:=m:it:=it+1: fi: od: if isprime(it) then lst:={}: for p from 1 to it do: lst:=lst union {irem(T[p],it)}: od: n0:=nops(lst): if n0=it-1 and lst[1]=1 then print(n): else fi: fi: od:
Extensions
a(14)-a(22) from Hiroaki Yamanouchi, Jan 19 2016
Comments