A267487 Primes p such that A001221(p+1)^(p-1) == 1 (mod p^2).
2, 3, 7, 31, 127, 1093, 3511, 8191, 131071, 524287
Offset: 1
Programs
-
Maple
isA267487 := proc(p) if isprime(p) then A001221(p+1) ; simplify(modp(% &^ (p-1),p^2) =1 ); else false; end if; end proc: p := 2; for i from 1 do if isA267487(p) then printf("%d\n",p) ; end if; p := nextprime(p) ; end do: # R. J. Mathar, Jan 23 2016
-
Mathematica
Select[Prime[Range[3200]], Mod[PrimeNu[# + 1], #^2]^(# - 1) == 1 &] (* G. C. Greubel, Apr 25 2017 *)
-
PARI
forprime(p=1, 1e9, if(Mod(omega(p+1), p^2)^(p-1)==1, print1(p, ", ")))
Comments