cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A267487 Primes p such that A001221(p+1)^(p-1) == 1 (mod p^2).

Original entry on oeis.org

2, 3, 7, 31, 127, 1093, 3511, 8191, 131071, 524287
Offset: 1

Views

Author

Felix Fröhlich, Jan 15 2016

Keywords

Comments

No further terms up to 10^9.
Are all terms of A000668 and A001220 in the sequence?
Does the sequence contain any terms not in A000668 or A001220 other than 2?

Crossrefs

Programs

  • Maple
    isA267487 := proc(p)
        if isprime(p) then
            A001221(p+1) ;
            simplify(modp(% &^ (p-1),p^2) =1 );
        else
            false;
        end if;
    end proc:
    p := 2;
    for i from 1 do
        if isA267487(p) then
            printf("%d\n",p) ;
        end if;
        p := nextprime(p) ;
    end do: # R. J. Mathar, Jan 23 2016
  • Mathematica
    Select[Prime[Range[3200]], Mod[PrimeNu[# + 1], #^2]^(# - 1) == 1 &] (* G. C. Greubel, Apr 25 2017 *)
  • PARI
    forprime(p=1, 1e9, if(Mod(omega(p+1), p^2)^(p-1)==1, print1(p, ", ")))