cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A267489 a(n) = n^2 - 4*floor(n^2/6).

Original entry on oeis.org

0, 1, 4, 5, 8, 9, 12, 17, 24, 29, 36, 41, 48, 57, 68, 77, 88, 97, 108, 121, 136, 149, 164, 177, 192, 209, 228, 245, 264, 281, 300, 321, 344, 365, 388, 409, 432, 457, 484, 509, 536, 561, 588, 617, 648, 677, 708, 737, 768, 801, 836, 869, 904
Offset: 0

Views

Author

Kival Ngaokrajang, Jan 16 2016

Keywords

Comments

Inspired by A137932 and A042948.
The pattern is generated by adding subdiagonals parallel to principal diagonals at a spacing of at least 1 box in any direction from the previous generation.
Conjectures:
(i) a(n) is the total number of boxes (or 1's) at the n-th iteration.
(ii) The total number of left boxes (or 0's) is 4*A056827.

Crossrefs

Programs

  • Magma
    [0] cat [n^2-4*Floor(n^2/6): n in [1..70]]; // Vincenzo Librandi, Jan 16 2016
  • Maple
    A267489:=n->n^2-4*floor(n^2/6): seq(A267489(n), n=0..100); # Wesley Ivan Hurt, Apr 11 2017
  • Mathematica
    Table[n^2 - 4 Floor[n^2 / 6], {n, 0, 70}] (* Vincenzo Librandi, Jan 16 2016 *)
  • PARI
    for (n = 0, 100, a = n^2-4*floor(n^2/6); print1(a, ", "))
    
  • PARI
    concat(0, Vec(x*(1+2*x-2*x^2+2*x^3-2*x^4+2*x^5+x^6)/((1-x)^3*(1+x)*(1-x+x^2)*(1+x+x^2)) + O(x^100))) \\ Colin Barker, Jan 16 2016
    
  • PARI
    a(n)=n^2 - n^2\6*4 \\ Charles R Greathouse IV, Mar 22 2017
    

Formula

a(n) = n^2 - 4*floor(n^2/6) for n >= 0.
From Colin Barker, Jan 16 2016: (Start)
a(n) = 2*a(n-1) - a(n-2) + a(n-6) - 2*a(n-7) + a(n-8) for n>7.
G.f.: x*(1+2*x-2*x^2+2*x^3-2*x^4+2*x^5+x^6) / ((1-x)^3*(1+x)*(1-x+x^2)*(1+x+x^2)).
(End)