cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A267821 Primes whose base-9 representation is a square in base 10.

Original entry on oeis.org

23, 73, 509, 643, 751, 1093, 1153, 1481, 1783, 2029, 6067, 8011, 8933, 9613, 16061, 24763, 30803, 44203, 64633, 74521, 82723, 88003, 94033, 103171, 106619, 118669, 126541, 133321, 154571, 158293, 163561, 165883, 179821, 197339, 202393, 207643, 225523, 234733, 264083, 268003, 284593, 288661, 324931
Offset: 1

Views

Author

Christopher Cormier, Jan 20 2016

Keywords

Comments

Primes in the sequence A267769.

Examples

			73 in base 9 is 81, and 81 = 9^2 in base 10.
		

Crossrefs

In other bases: A267817 - A267821, A241246, A267490.

Programs

  • Mathematica
    Select[Prime@ Range@ 28000, IntegerQ@ Sqrt@ FromDigits@ IntegerDigits[#, 9] &] (* Michael De Vlieger, Jan 24 2016 *)
  • Python
    from sympy import isprime
    A267821_list = [int(d,9) for d in (str(i**2) for i in range(1,10**6)) if max(d) < '9' and isprime(int(d,9))] # Chai Wah Wu, Feb 22 2016

A267768 Numbers whose base-8 representation is a square when read in base 10.

Original entry on oeis.org

0, 1, 4, 14, 21, 30, 52, 64, 81, 100, 149, 174, 212, 241, 256, 289, 382, 405, 446, 532, 622, 661, 804, 849, 896, 1012, 1045, 1102, 1220, 1281, 1344, 1409, 1476, 1557, 1630, 1780, 1920, 2001, 2197, 2286, 2452, 2545, 2593, 2878, 2965, 3070, 3233, 3328, 3441, 3540, 3630, 3733, 4068, 4096
Offset: 1

Views

Author

M. F. Hasler, Jan 20 2016

Keywords

Comments

Trivially includes powers of 64, since 64^k = 100..00_8 = 10^(2k) when read in base 10. Moreover, for any a(n) in the sequence, 64*a(n) is also in the sequence. One could call "primitive" the terms not of this form. These primitive terms include the subsequence 64^k + 2*8^k + 1 = (8^k+1)^2, k > 0, which yields A033934 when written in base 8.
Motivated by the subsequence A267490 which lists the primes in this sequence.

Crossrefs

Cf. A267763 - A267769 for bases 3 through 9. The base-2 analog is A000302 = powers of 4.

Programs

  • Magma
    [n: n in [0..10^4] | IsSquare(Seqint(Intseq(n, 8)))]; // Vincenzo Librandi, Dec 28 2016
  • Mathematica
    Select[Range[0, 2 10^4], IntegerQ@Sqrt@FromDigits@IntegerDigits[#, 8] &] (* Vincenzo Librandi, Dec 28 2016 *)
  • PARI
    is(n,b=8,c=10)=issquare(subst(Pol(digits(n,b)),x,c))
    
  • Python
    A267768_list = [int(s, 8) for s in (str(i**2) for i in range(10**6)) if max(s) < '8'] # Chai Wah Wu, Jan 20 2016
    

A267819 Primes whose base-5 representation is a square when read in base 10.

Original entry on oeis.org

89, 139, 4801, 6829, 9601, 48661, 305551, 539849, 867001, 3503449, 3527071, 6063839, 13912039, 15933439, 18100351, 18319321, 20366399, 22849121, 26239321, 46724801, 63565049, 78057911, 95802799, 100294871, 102369439, 107474911, 139769449, 141118079, 144829879, 159468079, 161483801
Offset: 1

Views

Author

Christopher Cormier, Jan 20 2016

Keywords

Comments

Primes in the sequence A267765.

Examples

			89 in base 5 is 324, and 324 = 18^2 in base 10.
		

Crossrefs

In other bases: A267817 - A267821, A241246, A267490.

Programs

  • Mathematica
    Select[Prime@ Range[10^6], IntegerQ@ Sqrt@ FromDigits@ IntegerDigits[#, 5] &] (* Michael De Vlieger, Jan 24 2016 *)
  • Python
    from sympy import isprime
    A267819_list = [int(d,5) for d in (str(i**2) for i in range(1,10**6)) if max(d) < '5' and isprime(int(d,5))] # Chai Wah Wu, Feb 22 2016

A267820 Primes whose base-6 representation is a square when read in base 10.

Original entry on oeis.org

17, 89, 409, 449, 577, 953, 7649, 12401, 14593, 23689, 28393, 29033, 30689, 36809, 40153, 46457, 47969, 54577, 56393, 59273, 65033, 72649, 78713, 92033, 98953, 106033, 141353, 146249, 150209, 169657, 176489, 199889, 205433, 221849, 235273, 238481, 245033, 258569, 381841, 394633, 441193, 529273
Offset: 1

Views

Author

Christopher Cormier, Jan 20 2016

Keywords

Comments

Primes in the sequence A267766.

Examples

			17 in base 6 is 25, and 25 = 5^2 in base 10.
		

Crossrefs

In other bases: A267817 - A267821, A241246, A267490.

Programs

  • Mathematica
    Select[Prime@ Range@ 45000, IntegerQ@ Sqrt@ FromDigits@ IntegerDigits[#, 6] &] (* Michael De Vlieger, Jan 24 2016 *)
  • Python
    from sympy import isprime
    A267820_list = [int(d,6) for d in (str(i**2) for i in range(1,10**6)) if max(d) < '6' and isprime(int(d,6))] # Chai Wah Wu, Feb 22 2016

A267818 Primes whose base-4 representation is a square when read in base 10.

Original entry on oeis.org

673, 1165921, 6228961, 53378329, 128818873, 805379161, 926711449, 1542173569, 2459671993, 8365652929, 14232980953, 26484614209, 30755887321, 31937961241, 37968797689, 78180076129, 80974979329, 97835803129, 168394504129, 314911422913, 410879716321, 529074406681
Offset: 1

Views

Author

Christopher Cormier, Jan 20 2016

Keywords

Comments

Primes in the sequence A267764.

Examples

			673 written in base 4 is 22201, and 22201 in base 10 is 149^2.
		

Crossrefs

Programs

  • Mathematica
    Select[Prime@ Range[10^6], IntegerQ@ Sqrt@ FromDigits@ IntegerDigits[#, 4] &] (* Michael De Vlieger, Jan 24 2016 *)
  • PARI
    is(n, b=4, c=10)=issquare(subst(Pol(digits(n, b)), x, c))
    lista(nn) = forprime(p=2, nn, if (is(p), print1(p, ", "))) \\ Michel Marcus, Jan 24 2016
    
  • Python
    from sympy import isprime
    A267818_list = [int(d,4) for d in (str(i**2) for i in range(1,10**6)) if max(d) < '4' and isprime(int(d,4))] # Chai Wah Wu, Feb 22 2016

Extensions

a(8)-a(22) from Chai Wah Wu, Feb 22 2016
Showing 1-5 of 5 results.