A267540 Primes p such that p (mod 3) = p (mod 5).
2, 17, 31, 47, 61, 107, 137, 151, 167, 181, 197, 211, 227, 241, 257, 271, 317, 331, 347, 421, 467, 541, 557, 571, 587, 601, 617, 631, 647, 661, 677, 691, 751, 797, 811, 827, 857, 887, 947, 977, 991, 1021, 1051, 1097, 1171, 1187, 1201, 1217, 1231, 1277, 1291
Offset: 1
Programs
-
Magma
[p: p in PrimesUpTo(2000) | p mod 3 eq p mod 5]; // Vincenzo Librandi, Jan 17 2016
-
Maple
select(isprime, [seq(seq(15*i+j, j= 1..2), i=0..10000)]); # Robert Israel, Jan 17 2016
-
Mathematica
Select[ Prime[ Range[10000]], (Mod[#,3] == Mod[#,5]) &] (* Or *) Select[ Prime[ Range[10000]], 0 < Mod[#,15] < 3 &]
-
PARI
lista(nn) = forprime(p=2, nn, if(p%3 == p%5, print1(p, ", "))); \\ Altug Alkan, Jan 17 2016
Formula
a(n) = 1/2*((-1)^n*(3*(-1)^n*(10n+81)-1)) with (1
G.f.: (x*(-14x^6-32x^5+16x^4+30x^3-x+14)+17)/((x-1)^2*(x+1)) generates a(2)...a(16), (0<=x<15).
G.f.: (x*(x*(30x*(-2x^4-x^3+x+2)-301)+14)+317)/((x-1)^2*(x+1)) generates a(17)...a(32), (0<=x<16).
Extensions
More terms from Vincenzo Librandi, Jan 17 2016
Comments