cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A267540 Primes p such that p (mod 3) = p (mod 5).

Original entry on oeis.org

2, 17, 31, 47, 61, 107, 137, 151, 167, 181, 197, 211, 227, 241, 257, 271, 317, 331, 347, 421, 467, 541, 557, 571, 587, 601, 617, 631, 647, 661, 677, 691, 751, 797, 811, 827, 857, 887, 947, 977, 991, 1021, 1051, 1097, 1171, 1187, 1201, 1217, 1231, 1277, 1291
Offset: 1

Views

Author

Mikk Heidemaa, Jan 16 2016

Keywords

Comments

Or primes p such that p (mod 15) = {1, 2}.
Terminal digits in a(7)...a(32) alternate 26 times (7, 1, 7, 1, 7, 1, 7, 1, 7, 1, 7, 1, 7, 1, 7, 1, 7, 1, 7, 1, 7, 1, 7, 1, 7, 1). 25 differences between the 2 consecutive terms in this range show patterns as well.
A differenceroot function can generate the terms a(7)...a(32).

Crossrefs

Programs

  • Magma
    [p: p in PrimesUpTo(2000) | p mod 3 eq p mod 5]; // Vincenzo Librandi, Jan 17 2016
    
  • Maple
    select(isprime, [seq(seq(15*i+j, j= 1..2), i=0..10000)]); # Robert Israel, Jan 17 2016
  • Mathematica
    Select[ Prime[ Range[10000]], (Mod[#,3] == Mod[#,5]) &] (* Or *)
    Select[ Prime[ Range[10000]], 0 < Mod[#,15] < 3 &]
  • PARI
    lista(nn) = forprime(p=2, nn, if(p%3 == p%5, print1(p, ", "))); \\ Altug Alkan, Jan 17 2016

Formula

a(n) = 1/2*((-1)^n*(3*(-1)^n*(10n+81)-1)) with (1
G.f.: (x*(-14x^6-32x^5+16x^4+30x^3-x+14)+17)/((x-1)^2*(x+1)) generates a(2)...a(16), (0<=x<15).
G.f.: (x*(x*(30x*(-2x^4-x^3+x+2)-301)+14)+317)/((x-1)^2*(x+1)) generates a(17)...a(32), (0<=x<16).

Extensions

More terms from Vincenzo Librandi, Jan 17 2016